
Relevanzorientierte Exploration
von

Molekulardynamik-Simulationen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Thomas Trautner, BSc
Matrikelnummer 01125421

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Univ.Ass. Dr.techn. Manuela Waldner, MSc

RNDr. Jan Byška, Ph.D.

Wien, 3. Oktober 2018
Thomas Trautner Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Importance-Driven Exploration of
Molecular Dynamics Simulations

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Thomas Trautner, BSc
Registration Number 01125421

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Univ.Ass. Dr.techn. Manuela Waldner, MSc

RNDr. Jan Byška, Ph.D.

Vienna, 3rd October, 2018
Thomas Trautner Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Thomas Trautner, BSc
Erdbrustgasse 58/3+4, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Oktober 2018
Thomas Trautner

v

Acknowledgements

I would like to express my thanks especially to my supervisors Manuela Waldner and
Jan Byška. Thank you for your motivation and restless support throughout the whole
Master’s thesis. This applied not only to theoretical questions in the area of visualization,
but also practical software implementation tips that have continuously improved the
quality of this work. Thanks to you, I have very much enjoyed researching internationally
between Vienna, Brno, and Bergen.

Furthermore, I would like to thank Meister Eduard Gröller for his support during this
work and throughout my studies, and for his joy of teaching visualization and computer
graphics. Thank you for so many exciting insights that taught me how much there is
still to learn.

I would also like to thank Barbora Kozlíková for her dedication and enthusiasm for
molecular visualization. Because of her and her students, I discovered my excitement for
visualizing complex molecular structures and animated MD-simulations.

Additionally, I would like to thank Stefan Bruckner and the entire visualization research
group in Bergen not only for the great time I spent in Norway but also for the exciting
future that lies ahead of me.

Of course, my greatest thanks go to my parents. Without your support throughout school
and during my studies, I would not be able to make my small contribution to the world
of research. Thank you for being who you are, and I am happy and proud to be your son!

vii

Kurzfassung

Ziel dieser Masterarbeit ist die Entwicklung einer neuen Echtzeit-Visualisierung, für
die Erforschung von Molekulardynamik (MD)-Simulationen. Nachdem sich Computer-
Hardware ständig verbessert und die Rechenleistung laufend zunimmt, werden MD-
Simulationen immer detaillierter, sind leichter verfügbar und bestehen aus Hunderten,
Tausenden oder sogar Millionen von einzelnen Simulationsschritten. Die Berechnung
von solchen Simulationen ist nicht länger durch Algorithmen oder Hardware beschränkt,
trotzdem ist es immer noch nicht möglich diese riesige Datenmenge, als animierte 3D
Visualisierung, mit gängigen Visualisierungs-Werkzeugen zu erforschen. Zusätzlich dazu
beansprucht die Nutzung von aktuellen Software-Werkzeugen, für die Erforschung solch
langer Simulationen, zu viel Zeit. Molekulare Szenen sind äußerst dicht und detailreich,
wodurch Visualisierungen unter einem visuellen Durcheinander leiden. Es ist daher leicht
möglich, dass Benutzer wichtige Ereignisse verpassen.

Daher haben wir eine Fokus & Kontext Visualisierung entwickelt, die die Benutzer zu
den relevantesten zeitlichen- und räumlichen Ereignissen geleitet und es ist nicht mehr
notwendig, die Simulation linear zu explorieren. Unser Beitrag kann in folgende vier
Themengebiete unterteilt werden:

1. Räumliche-Wichtigkeit durch Levels of Detail. Abhängig von Forschungsaufgaben
können verschiedene geometrische Darstellungsformen, sowohl für Objekte im Fokus,
als auch im Kontext ausgewählt werden.

2. Relevanzorientierte Verwaltung der Sichtbarkeit mit Hilfe von Ghosting. Dies soll
verhindern, dass Kontextelemente Fokuselemente verdecken.

3. Zeitliche-Wichtigkeit mit Hilfe von Adaptive Fast-Forward. Dabei ist die Abspielge-
schwindigkeit der Simulation abhängig von einzelnen-, oder einer Kombination aus
mehreren Wichtigkeitsfunktionen.

4. Visuelle Verbesserung der abgespielten Simulation mit Hilfe von Motion Blur. Die
Intensität der Bewegungsunschärfe wird zusätzlich dazu verwendet, die Stärke der
aktuell gezeigten Beschleunigung zu illustrieren.

Diese Arbeit wurde von Beginn an in enger Zusammenarbeit mit Biochemikern des
Loschmidt-Labors in Brünn, Tschechien entwickelt. Gemeinsam haben wir verschiedene
Anwendungsfälle analysiert und die Flexibilität unserer neuartiger Fokus & Kontext
Visualisierung demonstriert.

ix

Abstract

The aim of this thesis is a novel real-time visualization approach for exploring molecular
dynamics (MD-)simulations. Through the constantly improving hardware and ever-
increasing computing power, MD-simulations are more easily available. Additionally, they
consist of hundreds, thousands or even millions of individual simulation frames and are
getting more and more detailed. The calculation of such simulations is no longer limited
by algorithms or hardware, nevertheless it is still not possible to efficiently explore this
huge amount of simulation data, as animated 3D visualization, with ordinary and well
established visualization tools. Using current software tools, the exploration of such long
simulations takes too much time and due to the complexity of large molecular scenes,
the visualizations highly suffer from visual clutter. It is therefore very likely that the
user will miss important events.

Therefore, we designed a focus & context approach for MD-simulations that guides the
user to the most relevant temporal and spatial events, and it is no longer necessary to
explore the simulation in a linear fashion. Our contribution can be divided into the
following four topics:

1. Spatial importance through different levels of detail. Depending on the type of
research task, different geometrical representations can be selected for both, focus-
and context elements.

2. Importance driven visibility management through ghosting, to prevent context
elements from occluding focus elements.

3. Temporal importance through adaptive fast-forward. The playback speed of the
simulation is thereby dependent on a single or a combination of multiple importance
functions.

4. Visual declutter of accumulated frames through motion blur, which additionally
illustrates the playback speed-up.

Since the very beginning, this work was developed in close cooperation with biochemists
from the Loschmidt Laboratories in Brno, Czech Republic. Together, we analyzed
different use cases demonstrating the flexibility of our novel focus & context approach.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Background 5
2.1 Molecular Visualization . 5
2.2 Molecular Dynamics Simulations . 12

3 Related Work 15
3.1 Visualizations of MD-Simulations . 15
3.2 Focus & Context Visualizations . 18
3.3 Time-Varying Data Visualization . 28

4 Spatio-Temporal Focus & Context for MD-Simulations 41
4.1 Graphical User Interface . 42
4.2 Spatial Importance . 46
4.3 Temporal Importance . 56

5 Implementation 71
5.1 Spatial Importance . 73
5.2 Temporal Importance . 74

6 Use Cases 79
6.1 Influence of Residues on the Ligand 80
6.2 Influence of Waters on the Protein . 84

7 Conclusions and Future Work 91
7.1 Conclusion . 91
7.2 Future Work . 92

Bibliography 95

xiii

CHAPTER 1
Introduction

Molecular dynamic (MD-)simulations play an important role in various scientific fields
like chemistry, physics, biotechnology, agronomy, medicine, and pharmaceutical research.
In this context, they are used to analyze the functionality, motion, mutation, and folding
of proteins. Nowadays, biochemists use statistics and statistical tests in combination
with static graphs, like line plots, to explore these dynamic interactions. To be able to
generate new hypotheses during this exploratory analysis and to fully understand not
only the focus, but also the context of such real-time simulations, currently used 3D
visualizations are no longer sufficient.

Through the constantly improving hardware and ever-increasing computing power, MD-
simulations are more easily available and therefore used more often. Additionally, they
do not only get more detailed and more complex, but also much longer and consist of
hundreds, thousands, or even millions of individual frames. Using current software tools
and interfaces, the exploration of such long simulations, as animated 3D visualizations,
takes too much time and it is no longer possible to explore the simulation in a linear fashion.
Without precise guidance, the user has to repeatedly watch the whole MD-simulation,
otherwise it is very likely that important events will be missed.

After some formative interviews with biochemists from the Loschmidt Laboratories, it
was clearly visible that not only a spatial but also a temporal importance is necessary:

• A spatial importance is required because it is already challenging to explore individ-
ual not animated MD-simulation keyframes. Without spatial importance, scenes
are too detailed, complex, and occluded to generate new hypotheses.

• A temporal importance function is needed since simply removing individual frames
or sections of an MD-simulation, to reduce the overall length of the animation, is
not enough to summarize a simulation or focus on certain parts of the animation.

1

1. Introduction

To still be able to explore and gain insights into long MD-simulations that consist of
an immense number of individual frames, our goal was to design and implement a
combination of spatial and temporal focus & context techniques. Our novel, interactive,
and animated 3D presentation technique gives important parts of the simulation more
time and provides additional graphics resources. This should help guiding the user to the
most relevant temporal and spatial events of the simulation without losing the context or
general overview of the animation. It was achieved using various adjustable importance
functions that allow the user to define individual molecules, like ligands or residues, as
spatial focus elements and biochemical properties, such as speed or stuckness of molecules,
as temporal importance for the playback speed of an animation.

Furthermore, we will introduce additional declutter algorithms such as ghosting and
motion blur. Ghosting is thereby used to prevent context structures from occluding
focus elements and motion blur serves as natural indicator for the playback speed and is
simultaneously used to reduce visual flickering. The resulting visualization provides a
guided exploration of a compact and more compressed MD-simulation that focuses on
essential parts and relevant events of the animation.

A software tool for analyzing and visualizing protein structures, called CAVER Analyst
[Ana], is currently developed at Masaryk University in Brno, Czech Republic. Using
CAVER Analyst, biochemists can already load and process MD-simulations. Additionally,
it allows the user to play, pause, forward, or skip parts of the animation using classic
video cassette recorder (VCR) media controls. A screenshot of this molecular exploration
tool is shown in Figure 1.1.

Figure 1.1: Graphical user interface of CAVER Analyst [Ana], which is a well established
software tool for the exploration of MD-simulations, used by biochemists.

2

Naturally, there are many other 3D MD-simulation visualization tools with similar
capabilities. Nevertheless, there is no tool that adjusts the visual presentation to what
the user is most interested in, which would at the same time already reduce visual clutter.

In the following, we will provide two examples of such detailed, cluttered, and visually
dense scenes including possible solutions using spatial importance. An example for
challenging ligand-residue interaction is shown in Figure 1.2 and problematic water-
protein interaction is shown in Figure 1.3.

Figure 1.2: Comparison of: (top) Visualization of all atoms of a protein, without spatial
importance, using a balls & sticks representation. (bottom left) Simplified visualization of
the secondary structure of a protein, using a cartoon representation, and a detailed balls
& sticks representation of the ligand and surrounding residues. (bottom right) Simplified
visualization of the secondary structure using a cartoon representation, a simplified sticks
representation of residues, and a detailed balls & sticks representation of the ligand.
Renderings produced using CAVER Analyst [Ana].

3

1. Introduction

Figure 1.3: Comparison of: (top) Visualization of all atoms of a protein including
surrounding water molecules, without spatial importance, using a balls & sticks repre-
sentation. (bottom left) Simplified visualization of the secondary structure of a protein
using a cartoon representation and a detailed balls & sticks representation of inside
waters or waters that will enter the protein. (bottom right) Simplified visualization
of the secondary structure, using a cartoon representation, a detailed balls & sticks
representation of inside waters, and a simplified sticks representation of waters that are
currently outside. Renderings produced using CAVER Analyst [Ana].

4

CHAPTER 2
Background

This chapter provides definitions and explanations of important terms, from different
scientific domains like (bio)chemistry, physics, biology, and other natural sciences, which
are necessary to understand the following contributions and implementation details.

For a better overview, this chapter is divided into the following sections: Section 2.1
will focus on general definitions of atoms and molecules, including their representation
types. Section 2.2 will explain molecular dynamics simulations in general, their historical
development, how they are generated, and why their exploration is challenging.

2.1 Molecular Visualization

Kozlíková et al. [KKF+17] define atoms as smallest units that every matter consists of,
independent of whether it is in a solid, liquid or gaseous aggregate state. If multiple
atoms form chemical bonds, the resulting structure is then called a molecule. Molecules
represent the smallest units of chemical compounds. If a molecule consists of thousands
or millions of atoms, for example, like very large proteins, DNA or RNA, it is also
referred to as a macromolecule [KKF+17]. A ligand represents an atom or molecule that
tries to bind to different other chemical elements, to form a larger molecular structure
[CWM99]. Residues represent chemical elements such as amino acids that are part
of larger molecular structures, like proteins. They consist of single or multiple atoms
that remain as a by-product of a chemical reaction. If biochemists want to analyze
ligand-protein or ligand-residue interactions, they need visualization tools that allow
them to study these processes in detail.

In the following section, we focus on publications from Olson [Ols18], who presents
different types of structural molecular biology visualizations and Perkins [Per05a][Per05b]
who highlights chronological representations of molecular structures.

5

2. Background

Already in 1865, Hofmann [Hof65] introduced a so-called glyptic formulæ, which is
sometimes also referred to as croquet ball model. It is the most basic type of a balls &
sticks model and represents the first model using a planar arrangement of atoms in space.
An example of three different structures is shown in Figure 2.1.

Figure 2.1: Three examples of the historically first planar balls & sticks model, introduced
by Hofmann [Hof65] in 1865. (left) Methane. (middle) Ethylene. (right) Dichloroethylene.
Image from Hofmann [Hof65].

Soon after that, Kekulé [Kek65] adapted this model so that it was no longer limited to
planar models and further added the possibility to create double- and triple bonds. It
corresponds to the balls & sticks model, which is still used nowadays in three-dimensional
computer generated visualizations. A photograph of such a physically modeled structure
is shown in Figure 2.2 and a digital rendering of a more complex molecule using nowadays
visualization tools is shown in Figure 2.3.

Figure 2.2: Photograph of a physical balls & sticks model that can show circular
structures including double- and triple bonds, introduced by Kekulé [Kek65] in 1865.
Image from Kekulé [Kek65].

6

2.1. Molecular Visualization

Figure 2.3: Visualization of a balls & sticks representation, similar to the physical model
introduced by Kekulé [Kek65]. Rendering produced using CAVER Analyst [Ana].

A simplified version of the balls & sticks model is the sticks model. Instead of showing
atoms and their bonds, it only visualizes the bonds between atoms. The advantage of this
representation type is that spheres do not occlude underlying bonds. This is especially
relevant for larger models. An example is shown in Figure 2.4.

Figure 2.4: Visualization of a sticks representation, which is a simplified version of the
balls & sticks model, showing only bonds between atoms. Rendering produced using
CAVER Analyst [Ana].

7

2. Background

In 1965, Koltun [Kol65] introduced a space-filling approach, which resulted in the Corey
Pauling Koltun (CPK) representation model. This representation uses the so-called van
der Waals radius, introduced by van der Waals in 1873 [Waa73], as sphere radius of
individual atoms. The radius represents half the distance between two unbound atoms
and is therefore dependent on the type of atom. An example is shown in Figure 2.5.

Figure 2.5: Visualization of a space-filling representation using the van der Waals radii
[Waa73] and an atom coloring scheme introduced by Koltun [Kol65]. Rendering produced
using CAVER Analyst [Ana].

An advantage of this representation, using radii of spheres that are dependent on atomic
types, is that it immediately shows the shape and surface of the original molecule and
furthermore their actual relation and relative distances to each other. Additionally, bio-
chemical properties or other information can be encoded as colors of the spheres [KKF+17].
The default color scheme, depending on atom types, was introduced by Koltun [Kol65].
An overview of the colors, of the CPK model, is shown in Table 2.1. Typical disad-
vantages of the space-filling approach are that bindings and therefore also the type of
bindings (single, double, triple) are not shown. In addition, the spheres very likely occlude
underlying structures of atoms or hide encapsulated interior atoms. To be able to analyze
the whole surface, the user has to rotate the object.

An important milestone in the history of space-filling representations that solved these
occlusion problems was presented by Lee and Richards [LR71] in 1971. They visualized
molecular structures as spheres, using their van der Waals radii. But instead of exploring
just the surface of a molecule, this innovation allowed scientists to additionally analyze
and study the interior of a molecule. The visualization was done using a stack of computer
generated prints on plastic sheets, placed on top of each other. An example of their
results is shown in Figure 2.6.

8

2.1. Molecular Visualization

hydrogen (H) white
carbon (C) black
nitrogen (N) dark blue
oxygen (O) red
fluorine (F), chlorine (Cl) green
bromine (Br) dark red
iodine (I) dark violet
noble gases (He, Ne, Ar, Xe, Kr) cyan
phosphorus (P) orange
sulfur (S) yellow
boron (B) peach
alkali metals (Li, Na, K, Rb, Cs, Fr) violet
alkaline earth metals (Be, Mg, Ca, Sr, Ba, Ra) dark green
titanium (Ti) gray
iron (Fe) dark orange
other elements pink

Table 2.1: List showing default colors used by the CPK model, which was introduced by
Koltun [Kol65] in 1965.

Figure 2.6: Visualization of a molecule, using van der Waals radii, that allows
the exploration of interior molecular structures and prevents occlusion problems.
Image from Lee and Richards [LR71].

9

2. Background

A simplified version of the space-filling model is a representation, where spheres are
reduced to single points. Instead of rendering whole spheres using their van der Waals
radii, only the center of an atom is marked. On the one hand, this prevents occlusion
problems, but on the other hand, this leads to problems in correctly perceiving the
hierarchical spatial order of individual atoms. An example of such a simplified version,
using crosses to indicate the center of atoms, is shown in Figure 2.7.

Figure 2.7: Visualization of a simplified space-filling representation using little crosses
that indicate the center of atoms, instead of rendering individual spheres. Rendering
produced using CAVER Analyst [Ana].

If a molecule is too large and even the bonds are too dense for a simplified stick
representation, a so called cartoon- or ribbon-representation can be used. Richardson
[Ric81] introduced this representation model in 1981. Instead of the surface, it represents
the secondary structure of a molecule and typically consists of arrows, ribbons, and
cylinders or spirals. According to Kozlíková et al. [KKF+17], the most common elements
are the α-helix (spiral) and the β-sheet (broad band with arrow). An example is shown
in Figure 2.8.

Next, we will briefly mention currently used illumination models in molecular visual-
izations. In 1975, Phong [Pho75] developed a local illumination model, which was 1977
further adapted by Blinn [Bli77]. Both represent the most basic but still frequently used
local illumination models that consider ambient, diffuse, and specular illumination. Such
simple approaches are sufficient for smaller molecular models. But larger models that may
also contain cavities, require more elaborate techniques. An example is ambient occlusion,
which was developed based on the work of Miller [Mil94] and Zhukov et al. [ZIK98]. An
example of a locally illuminated molecule, in comparison to a molecule that is lit using
ambient occlusion, is shown in Figure 2.9

10

2.1. Molecular Visualization

Figure 2.8: Example of a simplified cartoon representation. It visualizes the secondary
structure of a molecule, instead of rendering detailed molecular structures like atoms and
bonds. Rendering produced using CAVER Analyst [Ana].

Figure 2.9: Comparison of different illumination models: (left) Local illumination that
does not provide a well-visible general structure of the molecule and (right) ambient occlu-
sion that does provide such a detailed overview. Image from Kozlíková et al. [KKF+17].

11

2. Background

The most popular and widely used data source for molecular structure data is the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) [BWF+].
It is an online data base for three-dimensional datasets of large molecules. The data are
mostly uploaded by biologists and chemists and are used for education or research. It
is managed by Worldwide Protein Data Bank and all their data is freely and publicly
available. In August 2018, the data base contained 143.392 different datasets.

2.2 Molecular Dynamics Simulations

The following definitions about molecular dynamic (MD) simulations are based on
standard literature from Frenkel and Smit [FS01], Andrew R. Leach [Lea09], and a
recently published state of the art report by Kozlíková et al. [KKF+17] about the
visualization of biomolecular structures.

Frenkel and Smit [FS01] describe MD-simulations as many-body systems where particles
obey the law of mechanics. The result of such a simulation is a collection of hundreds,
thousands, or millions of individual keyframes. Each keyframe contains the spatial
information of the molecule, trajectories of individual elements, and additional biochemical
properties. According to Hansson et al. [HOvG02], MD-simulations are used to better
understand natural processes, simulated on the basis of different timescales. Additionally,
they can be used to study molecular interactions like the ligand binding or to analyze
the conformational space during ligand docking. Hansson et al. [HOvG02] furthermore
mention important properties of MD-simulations like realistic representations of molecules
and their surrounding, the size of a molecular structure, and the duration of the simulation.

Historically, the first MD-simulation was computed by Alder and Wainwright [AW57],
in 1957. It was based on a simplified system consisting of hard spheres. Within such
systems, all objects follow Newton’s law of motion [Lea09], because they either remain
still, or move constantly in straight lines until another force acts on them. If two spheres
collide, they bounce off and move constantly in straight lines again. The goal of such
simulations is reaching an equilibrium for a chosen set of parameters. In addition, it can
be observed which spheres collide, the point in time they collide, and how the collision
affects their behavior. An example of these early simulations is shown in Figure 2.10.

Unfortunately, this model provides only most basic insights into molecular interactions.
Rahman [Rah64] introduced a more complex simulation system that additionally considers
changes of forces, if a particle moves or collides with a different particle. According to
Leach [Lea09], the resulting complexity can no longer be solved analytically, but requires
finite difference methods.

In the following, we will describe how initializing and running an MD-simulation can be
done. According to Leach [Lea09] and Frenkel et al. [FS01], the first step is finding an
initial setting based on real experiments or abstract thought experiments. This includes
defining the number of elements that need to be simulated. In addition, elements should
be placed according to the corresponding structure of interest and so that they do not

12

2.2. Molecular Dynamics Simulations

Figure 2.10: Comparison of two different simulations showing pathways of 32 hard spheres
after 3000 collisions. The particles were placed in (left) a solid material or (right) a fluid.
Image from Alder and Wainwright [AW59].

overlap. In the next step, starting velocities are assigned to individual atoms, depending
on the chosen temperature of the system. During the next step, the actual computation
is done depending on all kinds of forces that can affect atoms regardless of whether they
are bound or not. This is done using Newton’s law of motion until the system becomes
stable or until the simulated system reaches an initially defined equilibrium, which can
be dependent on factors such as temperature, pressure, kinetic or total energy. If these
parameters were chosen correctly, the simulation terminates. Otherwise, the computation
needs to be restarted using different starting values or a changed equilibrium. If an
equilibrium is reached, the position data, but also additional parameters such as energies
or velocities of the individual atoms, are stored per keyframe.

According to Leach [Lea09], the biggest challenge in MD-simulations is not just the
simulation of individual atoms, but the computation of collisions of entire molecules.
This is a challenge because collisions between molecules cannot be represented by single
rigid spheres like it was done with atoms. The consequences of such complex collisions
are dependent on the position and orientation of the molecules, because of their different
shapes and compositions. If a molecular structure is not rigid but flexible, further
intramolecular interactions must be considered.

13

CHAPTER 3
Related Work

The following chapter contains related work from a wide variety of scientific domains
like visualization, computer graphics, computer vision, illustration, multimedia, human
computer interaction, bioinformatics, and biochemistry. Since, to the best of our knowl-
edge, there is no comparable related work that deals with spatio-temporal real-time
visualizations of MD-simulations, this work was inspired by similar problem formulations
from related scientific domains. Examples include fundamental challenges of rendering
large animated MD-simulations in 3D while interacting with the visualization in real-time,
typical motion-based focus & context techniques that are mainly used in the arts or
video domain, and the adaption of playback speed of MD-simulations, which is closely
related to the dynamic playback adaption of surveillance camera footage or highlighting
sections of sport videos.

Section 3.1 will focus on different 2D and 3D visualization types of MD-simulations
that allow domain experts to explore and analyze previously unknown properties of
the simulations. Section 3.2 describes different focus & context visualization strategies
for static visualizations, animated visualizations, and in connection with molecular
visualizations. Section 3.3 will focus on non-linear and adaptive video playbacks, different
fast-forward strategies, various possibilities for the user to interact with time-varying
data, and examples of visual feedback about the currently used playback speed of a video.

3.1 Visualizations of MD-Simulations
In the following, we will introduce the current state of the art in visualizing MD-simulations
in 3D as well as in 2D, that allows domain experts to explore the dataset, gain novel
insights, and confirm or disprove assumptions. Therefore, we have chosen two dif-
ferent approaches as representatives: In 3D, we will consider a multi-scale saliency
function to extract meaningful time steps of MD-simulations and in 2D, we will focus on
state-transition graphs.

15

3. Related Work

Patro et al. [PIV10] highlight the importance of meaningful visualizations of MD-
simulations. This is necessary, since computers are nowadays capable of computing
MD-simulations with a length and complexity like never before. Visualizing such sim-
ulations is not only restricted by hardware devices and limited screen resolutions, but
also overwhelming to the user and human absorbing capacities. The authors therefore
recommend reconsidering the visual representation of MD-simulation and also the selected
range of represented elements. Similar to our approach, the main interest of Patro et
al. [PIV10] is extracting most relevant events within an MD-simulation, to be able to
summarize an MD-simulation, provide meaningful fast-forwards, introduce an indexing,
and improve further explorations. In their approach, the importance of every keyframe is
computed based on how much the per-atom saliency measure differs from the previous
and subsequent keyframe. This computation is then performed over multiple scales of
the simulation. A visualization of this process flow is shown in Figure 3.1.

Figure 3.1: Keyframe extraction process: (Step 1) Computation of saliency values for
every atom, at different scales. (Step 2) For every scale, merger of individual saliency
values into representative functions. (Step 3) Combining saliency functions into a
single multi-scale saliency function. (Step 4) Selection of meaningful keyframes that
represent the MD-simulation depending on local minima of the function. Image from
Patro et al. [PIV10].

The final result is a collection of significant keyframes that represent the MD-simulation.
A time step represents a meaningful keyframe, if the multi-scale saliency function reaches
a local extremum. A local minimum, for example, indicates a keyframe that is highly
representative. An example is shown in Figure 3.2.

16

3.1. Visualizations of MD-Simulations

Figure 3.2: Visualization of 10 meaningful keyframes, of a complex MD-simulation
consisting of 3 668 atoms and 834 keyframes. The function for extracting these keyframes
is shown in Figure 3.1. Image from Patro et al. [PIV10].

Patro et al. [PIB+11] present a different approach of summarizing MD-simulations as
state-transition graphs. The transitions and the number of transitions, which can be
encoded as thickness of an edge, represent the flow of a biomolecule. Major challenges
here are the extraction of states, that are used as vertices in the graph, and then the
identification of transitions between these states. As soon as this computation is finished,
different graph layout algorithms can be applied. An example of two different results of
such a visualization is shown in Figure 3.3.

Figure 3.3: Visualization of an MD-simulation as state-transition graphs, consisting of
11 different states. (left) A graph with uniform edge width. (right) A graph where the
number of transitions is encoded using the edge width. Image from Patro et al. [PIB+11].

In comparison to their results, our approach was not only finding representative visual-
izations and meaningful keyframes. We wanted to keep the simulation interactive and
display the entire simulation as animation, using a computed importance function for
adaptive fast-forward playback. In our case, the importance function is not dependent
on individual representative states but on other meaningful values that can be selected
according to the focus of interest, such as the speed or stuckness of a ligand.

17

3. Related Work

3.2 Focus & Context Visualizations

In this section, we want to highlight rendering- and visualization strategies that provide an
intuitive categorization of important elements (that are in focus and therefore displayed
with a greater level of detail) and unimportant objects (that are in context and therefore
displayed in a simplified way). Hauser [Hau04] introduced a generalized definition of
focus & context visualization:

"focus+context visualization is the uneven use of graphics resources (space, opacity,
color, etc.) for visualization with the purpose of visually discriminating those parts
of the data which are in focus from the respective context, i.e., the rest of the data"
[Hau04].

MD-simulations consist of hundreds, thousands, or millions of atoms and therefore, tend
to be visually cluttered. According to Rosenholtz et al. [RLN07] visual clutter negatively
influences decision-making, reduces the performance of object recognition, prevents the
user from being able to visually separate objects in the scene, and worsens the short-term
memory. While visualizing MD-simulations, it is therefore important to reduce clutter
and apply focus & context approaches similar to the ones explained in the following.

For a better overview, this section is divided into three parts: Subsection 3.2.1 describes
focus & context approaches of static visualizations from domains like volume rendering,
stylized rendering, and medical illustrations. Subsection 3.2.2 highlights focus & context
visualizations for animations including examples from video processing and the analysis
of video records. Subsection 3.2.3 finally describes focus & context approaches in the
context of molecular visualizations.

3.2.1 Focus & Context in Static Visualizations

Viola et al. [VFSG06] highlight the importance of focus & context visualizations based
on volume rendering. Using their visualization, the user selects an object of interest and
the tool itself automatically recommends a possible point of view, to explore the object in
focus. To prevent occlusion problems, the authors additionally introduce cut-away views
and different visual representations of highlighted objects. Thereby, it is always possible
to distinguish between context information and visually emphasized focus objects. To
further de-emphasis context information, the authors additionally mention (semantic)
depth of field effects, introduced by Kosara et al. [KMH01]. An example of different
highlighted organs within a human torso is shown in Figure 3.4.

This confirms our initial assumption that particularly dense molecular structures and
occluded scenes could highly benefit from focus & context visualizations. In MD-
simulations, the user can select individual molecular focus structures, instead of organs,
bones, or blood vessels. The focus is then visually emphasized and surrounding structures
are abstracted. Similar to their approach, objects can further be highlighted by changing
their appearance and color, depending on chemical properties or user preferences.

18

3.2. Focus & Context Visualizations

Figure 3.4: Different volume rendering examples with focus on lungs, spleen, kid-
neys, intestines, or vessels. The human torso additionally provides context information.
Image from Viola et al. [VFSG06].

Bruckner et al. [BGKG06] introduce context-preserving volume rendering, sometimes
also referred to as ghosting. Initially, this is a technique mostly used by illustrators, to
show functionality or inner life of technical devices or organic objects that would not be
visible otherwise. They introduced this, since simple clipping of occluding objects mostly
removes context preserving elements and often even parts of elements that are in focus.
According to Bruckner et al. [BGKG06], this is done as follows: The transparency of an
object is dependent on the importance of the object itself, and the complexity and shape
of a surface. Especially less detailed surfaces become transparent and only necessary
edges, that are needed to mentally complete the visible object, are still displayed. An
example of a rendered hand, focusing on inner structures like blood vessels, muscles, and
bones, is shown in Figure 3.5.

Figure 3.5: Rendering of a hand focusing on inner structures like blood vessels, muscles,
and bones. Image from Bruckner et al. [BGKG06].

19

3. Related Work

We have noticed that the use of simplified cartoon representations, to provide context
information, tends to occlude visually more important elements in the inside of a molecular
structure such as atoms, ligands, or residues represented as balls & sticks. Although the
approach of Bruckner et al. [BGKG06] was initially introduced for volume rendering, we
came to the conclusion that the exploration of MD-simulations would also benefit from
semi-transparent and context preserving rendering strategies. During our research, this
assumption has been repeatedly confirmed by biochemists.

A related approach is presented by Viola et al. [VKG04]. The authors introduce a view-
dependent importance-driven volume rendering visualization. It represents an importance
driven focus & context approach dependent on object importance, levels of sparseness,
and an importance composition. The object importance represents a positive numerical
value describing the visual importance of every structure. The level of sparseness provides
different levels of abstraction using opacity and color saturation modulation, screen-door
transparency, and volume thinning. Examples of the three different levels of abstraction
are shown in Figure 3.6. According to Viola et al. [VKG04], maximum importance
projection (MImP) and average importance-compositing are two possible approaches for
importance composition. Using MImp, for example, only the most important objects are
displayed and occluding structures are fully transparent.

Figure 3.6: Visualization of three different levels of abstraction using variable factors
of sparseness. (Top), opacity and color saturation modulation, (middle) screen-door
transparency, and (bottom) volume thinning. Image from Viola et al. [VKG04].

Cole et al. [CDF+06] introduce stylized rendering used for 3D models, in the domain of
non-photorealistic rendering. Initially, the user selects the camera position, a region of
interest, and a visual style. The system then creates a rendering that intuitively draws
the user’s attention to certain parts of the visualization, which the authors call "stylized
focus". In addition, the authors mention that this approach can not only be used for
static scenes, but also for dynamic scenes in which the user’s attention is guided from
one region of interest to the next, which they then call "stylized focus pull". This is done

20

3.2. Focus & Context Visualizations

using different shading effects, color variations, various textures, etc. Their approach
originates from the arts domain where artists use different techniques to highlight parts
of drawings, paintings, or illustrations. A collection of renderings of an architectural
model, were the focus changes from buildings in the front, to skyscrapers in the back, is
shown in Figure 3.7.

Figure 3.7: Different illustrations were the focus is (left) on buildings in the front,
(middle) changes from front to back, and is (right) on the skyscrapers in the background.
Image from Cole et al. [CDF+06].

Similar to the approach from Cole et al. [CDF+06], we use colors and color transitions,
transparency of surfaces, diverse representation types of atoms, and different levels of
detail of molecular structures, to direct the user’s attention to specific elements.

A different approach for medical illustrations, instead of architectural renderings, is
presented by Baer et al. [BALP09]. In recent years, many novel representation types of
objects in focus have been developed and in their work, they compare three different
representation types of lymph nodes: cutaways, stippling representations, and different
colorings. According to Baer et al. [BALP09], the challenge today is to find the right
visualization for every use case. A user study has shown that all participants preferred
additional guidance, like focus & context approaches, in complex medical visualizations.
The resulting user study had the following order of popularity: cutaways, stippling, and
red coloring. Cutaways was thereby the most accurate method including the shortest
reaction time. Additionally, there was no significant difference between stippling and red
coloring, concerning reaction time and accuracy. The authors additionally emphasize the
fact that most users achieved the best results with cutaways, but still preferred different
technique. Therefore, it was important for us to not only implement the most efficient
visualization, but in addition allow the user to choose between different focus & context
approaches. An example of all three lymph node representations is shown in Figure 3.8.

Although most of these approaches are also applicable in molecular visualizations, MD-
simulations are still challenging especially since scenes are no longer static, but animated
simulations consisting of thousands of keyframes and millions of atoms that can move
freely in space. In the next subsection, we will therefore explain different focus & context
approaches for animations.

21

3. Related Work

Figure 3.8: Collection of different focus & context approaches that are used to highlight
a lymph node: (left) Using a cutaway approach, (middle) highlighting the object using
stipplings, and (right) changing the color to red to further emphasize the object of interest.
Image from Baer et al. [BALP09].

3.2.2 Focus & Context for Animations

In the following, we will describe a general time model for time-varying visualizations
and then, present motion-based focus & context approaches from evolutions of building
constructions and the field of video processing that are also applicable in MD-simulations.

Wolter et al. [WAH+09] present a fundamental time model used for interactions and
visualizations of time-varying data, independent of the exact time scale of the underlying
data. Depending on the type of a visualization, time spans from seconds, minutes, days,
months, years, and centuries or milliseconds, microseconds, and nanoseconds need to
be considered. Independent of the exact time interval, the underlying data needs to
be mapped to a different format, so that the user can explore the visualization within
seconds or minutes. The authors define the following fundamental time model:

User Time represents the linear, acyclic, and continuous real-time we live in. It is
the time within which a user can interact with the visualization or react to certain
events.

Simulation Time represents the mapping between continuous user time and
discrete time steps of a simulation. In our case, it represents the duration of an
atom being displayed on screen.

Time Steps represent discrete frames that are produced by a simulation. In
our case, it represents individual keyframes of an MD-simulation. It is the short
duration where a single keyframe of the simulation is valid.

After defining a general time model that can be used for visualizations from various
scientific domains, in the following, we will focus on representative algorithms that apply
focus & context approaches to time-varying data using such fundamental time models.

22

3.2. Focus & Context Visualizations

Carvalho et al. [CDSRC08] introduce a focus & context approach based on a temporal
degree of interest (TDOI), which can be used for discrete time-dependent data. Fur-
thermore, TDOI defines visual properties such as color or transparency, but also other
non-photorealistic approaches such as edge variations or sketch representations. Typical
application areas are spatio-temporal evolutions of building constructions. An example is
shown in Figure 3.9.

Figure 3.9: Six examples of a spatio-temporal evolution of a building construction.
Image from Carvalho et al. [CDSRC08].

Carvalho et al. [CDSRC08] additionally mention challenges, especially if continuous data,
instead of discrete time steps, are used. Nevertheless, we tried to adapt their approach
and used a similar TDOI functions for our molecular visualization of MD-simulations.

Bai et al. [BAAR12] introduce a de-animation algorithm that makes it easier for the user
to observe and focus on certain movements that may be otherwise hard to see, such as
the precise finger movements while someone plays a guitar. It is challenging, since not
only the fingers are moving, but also the guitar itself. An example of a musician playing
the guitar is shown in Figure 3.10.

In MD-simulations, a similar approach that highly reduces the motion of the surrounding
molecule could be used. Afterwards, only trajectories of individual focus elements, such
as residues or ligands, are visible. Using such an approach, especially atoms and their
bonds are challenging since bonds and interactions between atoms would be distorted
and can no longer be displayed realistically. For biochemists, it would be impossible to
draw meaningful conclusions from such visualizations.

23

3. Related Work

Figure 3.10: Comparison of (left) a video of a musician playing the guitar resulting in a
totally blurred image and (right) a de-animated video of the same scene resulting in a
sharp background and precise finger movements. Image from Bai et al. [BAAR12].

Additionally, the Bai et al. [BAAR12] refer to motion magnification, to emphasize small
details or movements. It was introduced by Liu et al. [LTF+05] and deals with the exact
opposite. Their approach allows the user to focus on possible important elements that
are otherwise invisible. A video of a girl sitting on a swing can be processed in a way that
afterwards, even the beam on which the swing was mounted, starts visibly resonating.
An example of this video is shown in Figure 3.11.

Figure 3.11: Composition of a video of a girl sitting on a swing. (left) A single screen-
shot including the highlighted region that is magnified. (middle) The sequence be-
fore the magnification and (right) the sequence after the magnification. Image from
Liu et al. [LTF+05].

24

3.2. Focus & Context Visualizations

MD-simulations can generate similar effects to motion magnification, by rendering
a geometric simplification of the simulation. Less important elements are displayed
simplified and objects of higher importance are displayed in full detail. Therefore,
movements of important objects are easier to observe and even smallest movements are
emphasized while movements of unimportant objects are smoothed out since they are
rendered in a more simplified way.

Since MD-simulations are not videos, further molecular properties can be used for their
visualization. For example, the exact spatial position of each element, when and where
context elements occlude or intersect focus structures, the periodic table of elements,
colors, van der Waals radii, and many other properties are known. Furthermore, all
this data can be updated in real-time, for example, if the user interacts with the scene,
modifies rendering types or colors of molecular structures, or simply changes the viewing
perspective. All these possibilities and similar approaches that can be used for MD-
simulations will be discussed in detail in the next subsection.

3.2.3 Focus & Context for Molecular Visualizations

In this subsection, we will discuss related work from focus & context visualizations
of biomolecular structures using a state of the art report published by Kozlíková et
al. [KKF+17]. Afterwards, we will present an example by Cerqueira et al. [CBFR08],
showing the importance of visualizing ligand-protein interactions using various rendering
strategies and different levels of abstraction.

Kozlíková et al. [KKF+17] provide insights into currently used visual representations of
molecules. This can already be challenging since computers can simulate highly complex
and constantly increasing molecular processes. It becomes even more challenging, if such
simulations need to be visualized in real-time, while domain experts can still change
parameters and interact with the resulting focus & context visualization. Therefore, the
authors [KKF+17] distinguish between two different types of representations:

Static geometry which is similar to visualizing still images. According to Ko-
zlíková et al. [KKF+17], static images can still be used to express dynamic interac-
tions or results that originate from interaction processes.

Animations which do not simply represent pre-rendered videos, but a visualization
that changes simultaneously to user interactions.

A common way of rendering balls & sticks models that represent atoms as spheres
(using their van der Waals radii) and bonds between atoms as cylinders, is typically
done through triangulation. That is, because GPU hardware is optimized for such data
structures. Kozlíková et al. [KKF+17] highlight the importance of additionally improving
this rendering processes, for example, by using impostors, which were presented by
Montani et al. [MTC06]. Instead of rendering highly tessellated geometry of atoms
and bonds that consists of hundreds, thousands, or even millions of vertices, impostor
rendering requires much less vertices that need to preprocessed. This or similar speed-up

25

3. Related Work

approaches are necessary, to still be able to interact with a large, detailed, and animated
MD-simulation in real-time. An example of how a complex molecular structure can be
rendered using impostors is shown in Figure 3.12.

Figure 3.12: Example of a molecular visualization using sphere- and cylinder impostors:
(left) wire-frame rendering of impostor quads defined by 4 vertices each and (right) the
final rendering result. Image from Montani et al. [MTC06].

Moritz and Meyer [MM04] present a virtual reality case study that shows how simultane-
ously presenting different levels of abstraction supports the exploration of macromolecules.
A simplified way of visualizing molecules is the cartoon representation. It especially high-
lights the general structure of a protein instead of the exact atom positions. Additionally,
such simplified rendering strategies reduce occlusions and make it easier to perceive the
overall structure of a molecule. A focus & context example of two different cartoon
representations, in combination with detailed surface models, is shown in Figure 3.13.

Figure 3.13: Visualization of two different cartoon representations surrounded by the
semi-transparent surface of a protein and a red ligand in the center. The cartoon
representation consists of yellow arrows and (left) blue cylinders or (right) blue spirals,
representing helices. The ligand in the middle is rendered using (left) sticks or (right)
balls & sticks. Image from Kozlíková et al. [KKF+17].

26

3.2. Focus & Context Visualizations

Additionally, O’Donoghue et al. [OGF+10] present an overview of different visualization-
and rendering strategies that are used in the field of three-dimensional molecular visual-
ization. Especially in the beginning of an exploration, they highlight the importance of
showing the user a first impression of the general molecular structure. This can be done
by displaying simplified structures, like the already mentioned cartoon representation.
For the following exploration of individual elements, like ligands, the authors recommend
using either space-filling strategies or balls & sticks representation types.

Our visualization of MD-simulations highly benefits of these findings by O’Donoghue et
al. [OGF+10] and therefore uses these rendering types as default setting. In our visualiza-
tion, the entire structure of the molecule is initially simplified as cartoon representation,
which provides a meaningful first impression of the general structure. If the ligand is
selected as focus element, it will be displayed using balls & sticks. Inspired by Cerqueira
et al. [CBFR08], it is also possible to select different rendering strategies within our
visualization. Initially, focus elements are rendered using balls & sticks representations
and context elements are rendered using a sticks representation. Nevertheless, it is up to
the user to overrule this initial setting using personal preferences or rendering strategies
that are more suitable, depending on the current research questions. An example that
requires such changes could be that interactions of the ligand with surrounding residues
are in focus and not the ligand itself. Thus, the ligand could be visualized more simplified,
for example, by using sticks. The otherwise simplified surrounding structures are then in
focus and could be rendered using balls & sticks or space-filling strategies.

Such ligand interactions play an essential role in many research areas. Cerqueira et
al. [CBFR08] especially highlight application fields like medicine, agronomy, and the
pharmaceutical industry. The authors present a novel protocol that allows the user to
predict possible ligand binding poses. They emphasize the importance of considering
the flexibility of the protein, instead of rigid proteins, during this docking procedure. In
their resulting visualizations, they focus on ligands and residues that are located close to
the ligand, including their orientation. The surrounding protein only provides context
information. Figure 3.14 shows two possible visualizations of ligand binding sites.

Figure 3.14: Comparison of possible ligand binding sites, including surrounding residues,
within a protein. Visualization of the ligand using yellow sticks (left) surrounded by
yellow residues as balls & sticks, and the context protein using a cartoon representation,
or (right) surrounded by green residues as sticks, and the context protein using a surface
rendering strategy. Image from Cerqueira et al. [CBFR08].

27

3. Related Work

In addition, the authors [OGF+10] mention, that it can be helpful to superimpose
different visual representations of the same structures. Using our approach, this is done
as follows: The entire structure of the protein is represented as cartoon structure. Focus
elements are then rendered using more detailed rendering strategies. Since the rendering
is done in 3D, it can easily happen that context elements occlude focus elements. In
case of occlusions, we apply ghosting and render context structures semi-transparently,
to prevent and weaken negative side effects. This way, context will never occlude focus
elements and therefore the context is always visually less emphasized than focus elements.

Inspiration for our spatial importance approach, using different levels of abstractions,
also comes from van der Zwan et al. [vdZLBI11]. In their work, they draw attention
to potential difficulties researchers have, trying to understand the overall structure
and function of complex molecular data, such as proteins. According to the authors,
the resulting interactive illustration improves the spatial perception and provides a
visualization of continuous transitions between different stages of structural abstraction,
which at the same time enhances the "illustrativeness". In their work, they especially focus
on seamless transitions between different levels of abstraction. The following structural
abstraction stages are used: space fill, balls & sticks, licorice, backbone, and ribbon. An
example of all types is shown in Figure 3.15 and an example of compositions of different
levels of abstraction, to highlight parts within a protein, is shown in Figure 3.16.

Figure 3.15: Visualization of different molecular abstractions. (a) Space fill using
van der Waals radii, (b) balls & sticks, (c) licorice, (d) backbone, and (e) ribbon.
Image from van der Zwan et al. [vdZLBI11].

3.3 Time-Varying Data Visualization
In this section we will present related work from the domain of animated visualizations and
fast-forward video visualizations, whose focus is the generation of time-compressed videos.
Additionally, we will discuss possibilities for the user to interact with the visualization in
real-time and different approaches of visual feedback, representing the adaptive playback
speed, without distracting or confusing the user.

Höferlin et al. [HHWH11] describe three different types of video analysis that can be
used to summarize and shorten a raw input video:

Video abstraction, like still images or video skimming. Still images are used
to represent a video clip as single or multiple still images. These can be used in

28

3.3. Time-Varying Data Visualization

Figure 3.16: Composition of different rendering strategies: (left) Inner structures
are highlighted using simplified rendering strategies like ribbons and backbone,
whereas the background is rendered using the detailed space-filling rendering strat-
egy. (right) On the contrary, a detailed rendering of the inner structures using balls &
sticks and a simplified rendering of the outer structures using ribbons and backbone
rendering strategies is shown. Image from van der Zwan et al. [vdZLBI11].

slide shows or like it was presented by Liu et al. [LMH+07] as image mosaics. An
example of such a mosaic is shown in Figure 3.17.
Video skimming is used to create much shorter and more meaningful video clips
than the original raw video. It uses a temporal importance value that excludes
unnecessary parts of the video. Therefore, the same playback speed is used but less
important sections of the video are skipped. Typical examples are movie trailers.
In MD-simulations, this could be done by visualizing the exact point in time the
ligand performs and finishes the binding instead of showing the whole simulation.

Figure 3.17: Example of a video collage that immediately visualizes highlights of a video
within a single composition. Image from Liu et al. [LMH+07].

29

3. Related Work

Video browsing is a video analysis approach that requires user interaction and is
mostly used if the goal is to find a specific event within the video. It is implemented
as a slider, which is already integrated into most video players. The slider can be
moved by the user, to find interesting events within the video. This approach is very
error-prone, especially if the user is not aware of where or how many interesting
events occur in the video. Since MD-simulations are even more complex, it was
important for us that this process is not only dependent on the user interaction, but
also on additional importance functions that guide the user to interesting events.
This additionally reduces the chance of overlooking interesting events.

Adaptive video fast-forward uses a playback speed that is dependent on addi-
tional measurements or relevance values whereas classic fast-forward simply plays
the video at a new constant speed. Höferlin et al. [HKH+12] define adaptive video
fast-forward as non-linear time mapping, of unedited video material, to a different
animated visualization time. A possible relevance value could be the present motion
or visual complexity of a scene. For example, if a scene is dense, the video will
slow down and if the scene is sparse, the video will speed up. Figure 3.18 shows a
comparison of both approaches.

Figure 3.18: Comparison of (top) conventional fast-forward and (bottom) adaptive fast-
forward. Both result in an output video that contains 5 frames. Using fast-forward, every
second frame of the original raw video is removed. Using adaptive fast-forward, only
frames with low visual complexity are removed. Image from Höferlin et al. [HHWH11].

In our case, this raw material is represented by the MD-simulations, which consists of
hundreds or even thousands of individual simulation keyframes. These frames are then
mapped to an importance driven visualization that mostly displays important or most
relevant keyframes. The importance of every keyframe is thereby specified by a temporal
importance function. Since we want to skip unimportant frames and emphasize important
keyframes, this importance function is most likely not linear.

30

3.3. Time-Varying Data Visualization

The authors additionally state that adaptive fast-forward is especially useful in scenarios
where unedited materials, like in our case computed MD-simulations, are used. Since we
are using keyframes from an MD-simulation, instead of an input video, we further benefit
from the fact that we know exactly which molecular elements are visible at each point in
time and what their parameters like speed, movement direction, or other properties are.
In our case, the scene complexity alone is independent of relevant events, but we can
easily use parameters that are more meaningful for exploring MD-simulations.

Next, we want to highlight the work from Wildemuth et al. [WMY+03], recommending a
uniform fast-forward playback speed of 1:64 of the original video, using a default playback
speed of 30 frames per second (FPS). Thereby, every 64th frame is displayed and all other
frames in between are skipped. The authors performed a user study, which has shown
that a video cannot be played arbitrarily fast. It was examined whether textual and
graphical elements were detected within a video, if subsections of a video are recognized,
and if users were able to summarize the video in writing. If a video is played faster, it
can be viewed quicker since the overall duration is shorter. Unfortunately, the faster a
video is played, the more difficult it is for the viewer to understand and perceive the
content and correlations. In addition, the authors mentioned that it is important to allow
the user to manually adjust the playback speed.

In contrast to uniform fast-forward, adaptive fast-forward approaches require an impor-
tance function that defines the playback speed. It is essential but also challenging to
create such a significant and meaningful function. The type and category of a video can
already help creating such functions. Divakaran et al. [DO07] divide videos into two
categories: scripted videos and unscripted videos.

Scripted videos as feature films or news: They can easily be subdivided into
scenes and chapters. If the user is watching a recording of news on TV and is only
interested in the weather forecast, all reports from before can be easily skipped
since the weather forecast is usually always at the end.

Unscripted videos do not have these precise scenes or chapters and therefore,
it is much harder to subdivide them and skip unimportant scenes. If the user is
watching a soccer game and is only interested in goals, there is no specific point in
time the application can always fasten forward to, as there are different numbers of
goals scored during every game and at random points in time.

In their approach, Divakaran et al. [DO07] use the voice of the commentator to detect
highlights of unscripted videos shown on TV. The user can select a certain level of
importance and the video player will automatically guide the user through all the
important highlights of that video. Therefore, they introduce a highlight search where
the player automatically skips to the start position of a located highlight or summarize
playback where the player only shows highlights of the selected importance layer. An
example is shown in Figure 3.19.

31

3. Related Work

Figure 3.19: Composition of a horse race including the voice of a commentator, which
immediately leads to highlights within the video. Image from Divakaran et al. [DO07].

Instead of the voice of a moderator, MD-simulations can be explored using temporal
importance functions that represent possible important parts of the simulation. Instead
of watching the whole simulation over and over again, the user is directly guided to
important events. This highly reduces the chance of overlooking interesting events.

Additionally, Höferlin et al. [HKH+12] highlight the importance of combining frame
skipping and temporal blending of successive frames:

Frame skipping like (adaptive) fast-forward, removes as many unimportant frames
as possible. This is advantageous since it does not change the appearance of objects
within the video, it is easy to compute, and the acceleration is not limited by any
factors beside the number of keyframes [HKH+12]. On the contrary, this removal of
individual frames or sections disrupts the motion perception and increases motion
blindness, like it was shown by Scott-Brown and Cronin [SBC07].

Temporal blending of successive frames can be used for temporal anti-aliasing.
Therefore, it is used to reduce disruption that were introduced by frame skipping
and it is then often referred to as motion blurring [War04]. This approach focuses
on the human visual system, which also blurs fast moving objects. The resulting
motion strikes are a natural way to help our brain trace a movement.

For our approach of visualizing MD-simulations, it was also necessary to combine these
two approaches. We used adaptive fast-forward to skip less important parts of the
simulation and to reduce the overall length of the animation. This allows the user to
explore simulations that consist of an immense number of keyframes in a more compact
manner and in much less time, since the resulting simulation is shorter and mostly
displays important keyframes. Unfortunately, skipping individual frames also results
in visual flickering of elements, because their spatial positions changes more from one
frame to the next. Therefore, we used motion blur to reduce visual flickering of elements,
which is a natural result and an indicator the human brain is used to. Motion blur
is additionally used to indicate our current playback speed and the pace of individual
molecular elements within the simulation.

32

3.3. Time-Varying Data Visualization

Rav-Acha et al. [RAPP06] introduce video synopsis, a space-time volume that simulta-
neously shows multiple events within the same video frame, although they originally
appeared at different times. This highly reduces the length of surveillance camera footage
but requires a segmentation of the scene into individual objects. It is done by creating a
so-called space-time volume. Another possibility is a stroboscopic image where multiple
dynamic appearances of a single object are displayed within the same frame. This
obviously requires additional training for the user, since the same object can appear at
multiple different places within the same frame. Therefore, the length of the video is
reduced by increasing the visual density of the frames. An example of this space-time
volume is shown in Figure 3.20.

Figure 3.20: Example of a space-time volume that combines different objects
within the same frame, although they originally occur at different points in time.
Image from Rav-Acha et al. [RAPP06].

In MD-simulations, this is highly distracting since the exact atom positions are falsified
and visible atoms and their interactions would no longer correspond to the actual simula-
tion. Furthermore, the screen would be completely over-plotted since MD-simulations
usually consist of several thousands of molecular elements and the visual density is then
even increased.

Balabanian et al. [BVMG08] introduce temporal style transfer functions for volumetric
data. The underlying dataset consists of individual time steps that together represent
a development over time. Using their [BVMG08] approach, a collection of multiple
time steps can be visualized within a single image. Figure 3.21 shows two possible
visualizations of a bouncing super-ellipsoid using a temporal transfer function for a
dataset, consisting of 10 time steps. In both visualizations, especially the first and
the last time step are emphasized. By changing the temporal importance function, an
intermediate time step can be highlighted. Otherwise, only the contours of the individual
overlapping super-ellipsoids are shown.

33

3. Related Work

Figure 3.21: Visualization of a time-varying dataset consisting of 10 time steps using a
temporal style transfer function. The first time step is colored using a blue lit sphere
and the last time step using an orange lit sphere. Depending on the temporal transfer
function, an intermediate time step is either colored using a yellow lit sphere or only the
contours of the super-ellipsoids are displayed. Image from Balabanian et al. [BVMG08].

In the following, we will present possibilities for the user to interact with time-varying data.
Examples are: First, non-linear video playback presented by Dragicevic et al. [DRB+08].
Second, direct dragging of visualized objects along trajectories, presented by Wolter
et al. [WHTPK09] and finally, interactions with animated visualizations using differ-
ent graphical user interface (GUI) elements, presented by Kondo and Collins [KC14],
Hurst et al. [HJ05], and Willett et al. [WHA07].

Dragicevic et al. [DRB+08] introduce a novel interaction method called relative flow
dragging. Using their approach, the user directly clicks on an object within the video
and moves it along its visual trajectories, instead of pre-computing any importance
information or playback speed. Hereby, the mouse movement can help to find a precise
moment or position of an object within the video. The advantage of this method is the
close match between user input and video player output. Instead of using a seeker bar,
which is commonly used for time centric browsing, they introduce this direct manipulation
for space centric browsing. The speed-up of the video is therefore only dependent on the
mouse movement of the user. An example is shown in Figure 3.22.

34

3.3. Time-Varying Data Visualization

Figure 3.22: Example of relative flow dragging, where the user directly clicks on a
billiard ball and moves it along its trajectory instead of simply playing the video.
Image from Dragicevic et al. [DRB+08].

This frame navigation by mouse movement could also be used for visualizing MD-
simulations, for example, by clicking on the ligand and moving it, to identify the point in
time the animation should jump to. Currently this functionality is not implemented within
our framework, but it might be advantageous for future publications. Unfortunately,
it is problematic at the same time, since the user must know the exact movement of
the ligand beforehand. This could be difficult because MD-simulations are mostly far
too long to be learned by heart and the motion of atoms is not necessarily uniform in a
particular direction, but may seem almost random to inexperienced users. A solution
could be to display the simplified movement of the ligand as overlay.

Instead of dragging objects from a video, Wolter et al. [WHTPK09] present an interaction
method that allows the user to directly drag an object along its trajectory, within a
virtual reality (VR) based visualization system. The authors additionally highlight the
importance of cutaway techniques, to prevent occlusion problems. An example of such a
visualization is shown in Figure 3.23.

Kondo and Collins [KC14] present DimpVis, an object-centric temporal interaction
technique for time-varying data, which can be used on bar charts, scatter plots, heat
maps, and pie charts. DimpVis allows the user to directly interact with the visualization
itself, instead of using a time slider. This can be done using mouse movements or touch
gestures. The visualization is enhanced using additional visual paths that indicate how
the dataset changes over time. Exploring a time-varying dataset, the user can then
focus on the visualization itself and does not have to constantly check the time slider.
An example of an interactive bar chart visualization, using touch gestures, is shown
in Figure 3.24.

35

3. Related Work

Figure 3.23: Example of a user dragging and tracing a particle within a VR based
visualization system. Image from Wolter et al. [WHTPK09].

Figure 3.24: Example of DimpVis used on bar charts. The user can vertically
drag individual bars along their hint paths, to find out about changes over time.
Image from Kondo and Collins [KC14].

Hurst et al. [HJ05] introduce a different approach called ZoomSlider. It is a graphical
interface used to browse a video or access an animated visualization. Using sliders, the
length of the slider is unfortunately limited by the screen resolution or window size. This
can be problematic, especially if the playback of a video takes multiple hours or days
instead of a few seconds. Hurst et al. [HJ05] present an approach in which the temporal
position within the video can be selected horizontally using a classical GUI slider, but in
addition to this, the zoom level can be changed simultaneously by moving the mouse
vertically. The accuracy of vertical scaling is only limited by the height of the window.
This allows the user to find an almost arbitrarily precise point in time within the video
independent of the duration and without the use of additional interaction hardware or
other GUI elements. An example of such a ZoomSlider interface is shown in Figure 3.25.

36

3.3. Time-Varying Data Visualization

Figure 3.25: Example of the ZoomSlider interface including explanations of the differences
between horizontal and vertical mouse moves. Image from Hurst et al. [HJ05].

Using approaches like the ZoomSlider, the user can access an exact point in time within
a simulation. Nevertheless, it requires prior knowledge because the user needs to know
which parts of the simulation he or she is interested in. This is a challenge for MD-
simulations because the exact timing of an atom binding may not be known or because
the pre-phase or post-phase of a binding may additionally provide significant insight
about the simulation. Therefore, it is important to not only find a single point in time
but to be able to explore the entire video in a more compact manner.

A different approach, called scented widgets, is presented by Willett et al. [WHA07]. The
authors present a wide variety of commonly used GUI widgets such as sliders, check
boxes, radio buttons, trees, list boxes, or combo boxes that are extended with embedded
visualizations. An example of four different widgets is shown in Figure 3.26.

Figure 3.26: Examples of different widgets containing embedded visualizations (from left
to right): A slider including a color coded bar chart, ranked check boxes with additional
star icons, a color coded list box with check mark icons, and a tree including authors
and the number of edits. Image from Willett et al. [WHA07].

Willett et al. [WHA07] mention that especially in the beginning of an analysis, or if
the user is not familiar with the underlying dataset, scented widgets can improve the
exploration. Widgets will be used less, the more familiar a user is with the dataset. In
our visualization of MD-simulations, the slider corresponds to the playback function and
instead of the bar chart, an importance function is shown. This allows the user to skip
unimportant events, jump to specific points within the simulation, or modify the function
depending on other molecular properties.

37

3. Related Work

In the following, we want to discuss the current state of the art approaches for providing
the user with visual feedback representing the adaptive playback speed. Cheng et
al. [CLCC09] introduce the so called SmartPlayer, which represents an adaptive video
fast-forward approach and uses the metaphor of scenic car driving. If something visually
pleasing or interesting is in sight, the driver usually slows down and on the visually
monotonous highway, the car will speed up. A tachometer indicates the current speed-up
and especially important events are additionally highlighted. The player changes the
playback speed of a video depending on the visual complexity of a scene and learns
user preferences from previous videos. The complexity of a scene can, for example, be
derived using automatic analysis methods similar to those used in video skimming. A
disadvantage of this approach is that it requires lots of attention by the user who has to
continuously look down at the tachometer and up at the video again to see the playback
of the video as well as the actual speed-up factor located at the lower end of the screen.
Cheng et al. [CLCC09] additionally mention that the playback speed should not change
frame by frame, but allow the user to adapt to the speed-up by incrementally increasing
the speed. An example of this visual representation is shown in Figure 3.27 (left).

In addition to the Smart-Player, Höferlin et al. [HKH+12] introduce two additional
approaches: First, a so called Color-Frame. This approach adds a border to the video that
is then colors using a heat-map, indicating the current speed-up factor. The used coloring
is similar to the speedometer coloring introduced by Cheng et al. [CLCC09]. Second,
Analog Video Cassette Recorder (VCR) Fast Forward. This approach creates additional
horizontal streaks that indicate a speed-up of the playback. If those distorted lines are
not present, the object in the video moves with original speed. This is disadvantageous
while exploring MD-simulations, since the object might be of high relevance and can no
longer be observed by the user, since its shape and movement is horizontally distorted.
Both types of visual feedback are shown in Figure 3.27 (middle, right).

While exploring MD-simulations, we found out that motion blur is perceived much
more natural and the blur does not negatively affect the user-experience, since the basic
geometric shape of the object is not changed and both the speed of an object and the
fast-forward speed-up are directly encoded using the strength of the blur. Since the
user can additionally specify a temporal importance function, there is no inconsistent or
conflicting visual feedback between object speed and fast-forward-speed-up. Nevertheless,
users already indicated that they additionally want some numerical vales and more precise
feedback about the exact speed-up.

38

3.3. Time-Varying Data Visualization

Figure 3.27: Comparison of three different approaches for visual speed-up feedback for
the user: (left) Smart-Player [CLCC09] uses a speedometer. (middle) Color-Frame
[HKH+12] colors the border of the video according to the currently used speed-up. (right)
Analog VCR Fast Forward [HKH+12] uses horizontally distorted lines to indicate a
speed-up. Image from Höferlin et al. [HKH+12].

39

CHAPTER 4
Spatio-Temporal Focus & Context

for MD-Simulations

The following chapter describes the already provided graphical user interface (GUI) of
CAVER Analyst [Ana] and the theoretical functionality of our visualization in detail.
We will explain already supported features (which are shown in Figure 4.1, left) and our
contribution, describing how we have augmented this functionality (which is shown in
Figure 4.1, right). Section 4.1 describes the GUI and the explanation of theoretical details
is divided into Section 4.2 Spatial Importance and Section 4.3 Temporal Importance.

Figure 4.1: Overview of CAVER Analyst [Ana] including (left) already implemented
functionality for MD-simulations and (right) our contribution to enhance the exploration.

41

4. Spatio-Temporal Focus & Context for MD-Simulations

4.1 Graphical User Interface

This section describes how the user can interact with our real-time MD-simulation
using an already provided GUI. Additionally, it provides an explanation of the already
implemented functionality of CAVER Analyst [Ana] (Figure 4.1, left).

Input for our visualizations are individual keyframes of MD-simulations. These frames
are pre-computed on (super)computers and then stored in online or local databases. This
large number of simulated keyframes are loaded by the user and serve as input for our
interactive 3D visualization. Next, the user can interact with the visualization using a
graphical user interface. It allows the user to play, pause, forward, or skip parts of the
animation using classic VCR media controls, which is shown in Figure 4.2.

Figure 4.2: CAVER Analyst [Ana] GUI that allows the user to play, pause, forward, or
skip parts of the animation.

Keyframes of MD-simulations consist of a wide variety of file formats, such as topology
data, trajectory data, binary files, etc. These datasets already provide certain geometric
molecular properties such as the Euclidean distance between atoms, the speed at which
molecules move, the stuckness of ligands, and many others. After importing the keyframes,
the user can choose from many different temporal importance functions, combine them,
smooth them, change their minimum- and maximum thresholds, or compute and observe
the derivative of such functions. The GUI for these modifications is shown in Figure 4.3.

Figure 4.3: CAVER Analyst [Ana] GUI for modifications of the temporal importance
function. (1) 2D plot of the importance function. If multiple functions are selected, the
resulting function is colored and the individual functions are grayed out. (2) Settings for
minimum and maximum playback speed. (3) Selection of how functions are aggregated.
Options are: normalized sum, mean, maximum, or minimum values. (4) Possibility to
smooth the function. (5) List selection of integrated importance functions. (6) Selection
of the active function. (7) Check boxes to invert a function or calculate its derivative.

42

4.1. Graphical User Interface

Every importance function represents a normalized 2D function, which is why function
values are always in the range from 0 to 1. The basis of their computation are underlying
keyframes. If these importance functions are then used for temporal explorations, the
individual function values of the corresponding keyframes determine the playback speed
of the simulation. The closer an importance value is to 0, the faster the simulation will
be played. If the importance value is exactly 1, the original simulated playback speed will
be used. An example of an importance function that depends on the speed of a ligand is
shown in Figure 4.4. The higher a function value is, the faster the ligand moved.

Figure 4.4: Example of an importance function depending on the speed of a ligand. The
function is normalized and has an overall length of 1 000 keyframes. In addition, six
points over timer were marked, at which the ligand moved particularly fast but only for
a very short duration. Importance function provided by CAVER Analyst [Ana].

In the following, we will present examples of how temporal importance functions can
be used for the exploration of different research questions. Considering the speed of a
ligand, MD-simulation can be analyzed in three different ways:

1. Biochemists are interested in time ranges in which the ligand moves especially fast,
i.e., the faster a ligand moves the more relevant a keyframe is. In this case, the
function, as shown in Figure 4.4, can be used. The slower the ligand moves, the
faster the simulation will be played.

2. Biochemists are interested in time ranges in which the ligand moves very slow.
This is interesting for users who want to verify whether surrounding residues are
responsible for this slowdown. In this case, the importance function must be
inverted. The faster the ligand moves, the faster the simulation will be played. The
inverted function from Figure 4.4 is shown in Figure 4.5.

Figure 4.5: Example of an importance function, which represents the inverse of the
function shown in Figure 4.4. Importance function provided by CAVER Analyst [Ana].

43

4. Spatio-Temporal Focus & Context for MD-Simulations

3. Biochemists are interested in abrupt changes of the ligand speed. Therefore, the
derivative of a function can be computed. This is especially interesting for users
who want to spend more time specifically at points in time with strong changes in
the ligand speed. The derived function from Figure 4.4 is shown in Figure 4.6.

Figure 4.6: Example of a derivative, which represents the derivation of the importance
function shown in Figure 4.4. Derivative provided by CAVER Analyst [Ana].

Furthermore, CAVER Analyst [Ana] provides a GUI to choose between different rendering
strategies. This can be done in real-time and no pre-computation is needed. To do so,
we added two different selections to the GUI. The first one is for focus elements and the
second one is for context element. The GUI, including an example of how the currently
used context rendering strategy could be changed, is shown in Figure 4.7.

Figure 4.7: CAVER Analyst [Ana] GUI to change rendering strategies for focus and
context selections. Additionally, it can be used to change the color model of both
selections or hide/show individual selections.

In order to be able to assign individual elements, such as atoms, molecules, residues, etc.
to focus and context groups, or even discard them if they neither belong to focus nor
context, the whole MD-simulation has to be processed keyframe by keyframe. For the
selection of spatial focus & context, the provided GUI is shown in Figure 4.8.

In this case, the user chose the ligand as spatial focus and ligand contacts, i.e., residues
surrounding the ligand, as spatial context. By pushing the "Evaluate MD Simulation"
button, the distances of all residues to the ligand are calculated in every keyframe. If
their van der Waals radii overlap is greater or equal to -0.4 Å, as recommended by UCSF
Resource for Biocomputing, Visualization, and Informatics [Chi], the residue is assigned
to the spatial context group and the ligand is stored in the focus group.

44

4.1. Graphical User Interface

Figure 4.8: CAVER Analyst [Ana] GUI for the selection of the spatial importance
function. (1) List selections for spatial focus and context elements. In this case, the
ligand is in focus and ligand contacts are in context. (2) Possibility to export and import
already computed spatial importance functions. (3) Check box to enable or deactivate
the ghosting procedure. (4) Slider to manually change the intensity of motion blur.

In addition, the GUI shown in Figure 4.7 can be used to show or hide individual selections,
for example, if context residues are no longer required and should be hidden. Furthermore,
the user can change the used color model, which is responsible for coloring individual
atoms or entire residues. By default, the CPK model is used. For example, in practice it
is common to assign different custom colors to carbon atoms. A comparison between the
CPK model and orange colored carbon atoms is shown in Figure 4.9.

Figure 4.9: Comparison of two coloring strategies: (left) Default CPK color model and
(right) orange colored carbon atoms. Renderings produced using CAVER Analyst [Ana].

45

4. Spatio-Temporal Focus & Context for MD-Simulations

Instead of only changing colors per atom, we additionally give the user the possibility to
select a categorical color coding. Thereby, all context elements are uniformly colored and
all focus elements are uniformly colored. This should help to distinguish between focus
and context, especially if the same rendering strategy is selected for both, focus and
context elements. An example that uses balls & sticks for focus and context elements is
shown in Figure 4.10.

Figure 4.10: Comparison of: (left) The CPK color model used per atom and (right) a
uniform purple color for focus elements and a uniform blue color for context elements.
Renderings produced using CAVER Analyst [Ana].

4.2 Spatial Importance

To provide a spatial importance, we combine different rendering strategies. This includes
a simplified representation of entire proteins to provide the user with context information.
An example of such a simplified rendering strategy is the cartoon representation. In
addition, the user can select the focus of the exploration using the already described
GUI from Figure 4.8. For example, the ligand and surrounding residues can be analyzed.
Additionally, different geometric levels of detail and colors can be selected for all elements
within the scene. The ligand, for example, can be visualized using a detailed balls
& sticks representation and surrounding residues using a sticks representation. The
resulting composition of all focus & context elements represents an enhanced simulation
keyframe. Unfortunately, this naive composition does not prevent context elements
from occluding focus elements. Therefore, we apply an additional ghosting procedure,
which renders context elements semi-transparently and simultaneously highlights edges
of context structures. This is necessary since the focus is visually always more important
than the context.

Spatial importance can be divided into two main components: First, the selection of
suitable rendering strategies depending on current research questions or hypotheses.
Second, visibility management through ghosting procedures, which prevents occlusions
and ensures that focus elements are visually emphasized. Therefore, the following section
is divided into Subsection 4.2.1 Rendering Strategies for Focus & Context and Subsection
4.2.2 Visibility Management.

46

4.2. Spatial Importance

4.2.1 Rendering Strategies for Focus & Context

The most important part of spatial importance is the use and combination of different
rendering strategies. Examples, which are also shown in Figure 4.11, are: dots, sticks,
balls & sticks, space-filling, and surface representations. Additionally, complex molecules
or proteins, consisting of an immense number of atoms, can be simplified using a cartoon
representation, which is ideal for visualizing the context.

Figure 4.11: Comparison of five different rendering strategies for residues surrounding a
violet ligand in focus. The ligand is rendered using a detailed balls & sticks representation
and the protein is rendered using a simplified green cartoon representation. Renderings
produced using CAVER Analyst [Ana].

Depending on the chosen form of representation, either the interactions of residues are
emphasized, or the movements of the ligand. If residues are in focus, they could be
rendered using sticks or space-filling representations, which is shown in Figure 4.12 (top),
(bottom left), or using a balls & sticks and surface representation. These rendering strate-
gies especially emphasize their movements. If the user is, for example, interested in the
interaction of the ligand with surrounding residues, our CAVER Analyst [Ana] extension
recommends the following default rendering strategies: A balls & sticks representation
for the ligand in focus and a sticks representation for surrounding residues. This can be
changed or arbitrarily combined depending on user preferences or research questions.

47

4. Spatio-Temporal Focus & Context for MD-Simulations

If residues are in the context, they can be represented in a more simplified form using dots,
which is shown in Figure 4.12 (bottom right). Thereby, their movement is deemphasized
and only provides context information, similar to the cartoon structure for the whole
protein. The same approach applies to the ligand. If the ligand is in focus, it could be
rendered using a surface or balls & sticks representation, which is shown in Figure 4.12
(top), (bottom right), and if it represents just the context, it could be rendered using a
sticks representation, which is shown in Figure 4.12 (bottom left), or dots.

Figure 4.12: Three different combinations of rendering strategies: Residues are rendered
using (top) a sticks representation, (bottom left) a space-filling representation, and
(bottom right) dots. The ligand is rendered using (top) a balls & sticks representa-
tion, (bottom left) a sticks representation, and (bottom right) a surface representation.
Renderings produced using CAVER Analyst [Ana].

48

4.2. Spatial Importance

4.2.2 Visibility Management

Although the spatial importance function already reduces the density of highly complex
MD-simulations, resulting compositions of focus and context elements can still lead to
occlusions. To prevent this, we have analyzed a wider variety of rendering strategies for
visibility management. In the following, we will discuss and present a comparison of five
different strategies:

1. No visual preference: This strategy does not differentiate between focus and context
elements and therefore leads to the already described occlusion problems. An
example is shown in Figure 4.13 (1).

2. Clip planes: Using a single or multiple planes, this strategy clips occluding elements.
Especially problematic here is that both context and focus elements are removed.
Additionally, by already partially removing occluding objects, the whole context
information is lost. An example is shown in Figure 4.13 (2).

3. Rendering order : This strategy renders context elements first and subsequently,
independent of their depth values, focus elements. On the one hand, this prevents
occlusions and on the other hand, the spatial impression and depth perception is
completely destroyed. An example is shown in Figure 4.13 (3).

4. (Semi)-transparent rendering: In order to preserve a correct depth perception,
occluding structures are rendered semi-transparently. This shows the user that a
context element is currently in front of a focus structure without totally occluding
the focus element. An example is shown in Figure 4.13 (4).

5. Ghosting: This procedure represents an extension of semi-transparent rendering. It
allows us to check per-pixel, whether a context element was rendered in front of a
focus element. If this happened, the context is not simply replaced by the focus,
as this would destroy the spatial perception and the depth of the visualization.
Instead, the context pixel is rendered semi-transparently. This preserves the spatial
order and focus elements will always be visible. The gradient of every occluding
context pixel is thereby used to determine its transparency, which preserves the
visibility of the focus and additionally highlights edges and outlines of context
structures. An example is shown in Figure 4.13 (5).

An overview of the gosting procedure, including all three steps necessary to perform
ghosting, are listed below and shown in Figure 4.14:

1. Edge detection: The first step is rendering the scene containing focus as well as
context elements. This image is subsequently used to compute a grayscale intensity
image, which is then used for horizontal- and vertical edged detection using Sobel
convolution kernels.

2. Depth textures: Two depth textures are rendered, one containing focus and
context elements and one containing only focus elements. These textures are then
used to find out if context pixels occlude focus pixels.

49

4. Spatio-Temporal Focus & Context for MD-Simulations

3. Composition: Depending on a per-pixel occlusion check, based on the two depth
textures, colors of the focus and focus & context image are linearly interpolated
using the computed edge image, which especially highlights edges.

Figure 4.13: Comparison of different types of visibility management: (1) No visual
preference for focus elements. (2) Visibility management through clip planes, which
simultaneously remove focus elements. (3) Rendering focus elements always on top of
context structures. (4) Rendering occluding context structures semi-transparently. (5)
Ghosting, which renders occluding elements semi-transparently and additionally highlights
edges of context structures. Renderings produced using CAVER Analyst [Ana].

50

4.2. Spatial Importance

Figure 4.14: Overview of the ghosting procedure consisting of the following three steps:
Edge detection, computation of depth textures, and the final image composition. Ren-
derings produced using CAVER Analyst [Ana].

As already mentioned, the first step is rendering the scene containing focus as well as
context elements. A possible result of such a rendering is shown in Figure 4.15 (left).

Next, based on this color image, a grayscale intensity image is created. This was done
similar to the rgb2gray() function provided by MATLAB 2016b [Mat16]. The exact
calculation of a grayscale intensity pixel PGray is shown in Equation 4.1 (where PR

denotes the red-, PG the green-, and PB the blue color value of a pixel).

Pgray = 0.2989 · PR + 0.5870 · PG + 0.1140 · PB (4.1)

If this calculation is performed on every pixel, the result is a computed grayscale intensity
image, which is shown in Figure 4.15 (right).

51

4. Spatio-Temporal Focus & Context for MD-Simulations

Figure 4.15: (left) Rendering of a scene containing focus and context elements, which is
subsequently used for the computation of (right) the grayscale intensity image. Renderings
produced using CAVER Analyst [Ana].

During the next step, a convolution of the grayscale intensity image and a horizontal
Sobel kernel, to detect horizontal edges, and a vertical Sobel kernel, to highlight vertical
edges, is performed. The 3x3 matrix MHorizontal represents a horizontal kernel:

MHorizontal =

 1 2 1
0 0 0
−1 −2 −1

The transpose of the above matrix represents the 3x3 matrixMV ertical of a vertical kernel:

MV ertical = M ′
Horizontal =

1 0 −1
2 0 −2
1 0 −1

The result of a convolution with MHorizontal is shown in Figure 4.16 (left) and the result
of a convolution with MV ertical is shown in Figure 4.16 (right).

If a convolution was performed using a horizontal- and a vertical kernel, both results
can be combined on a per-pixel basis (PHorizontal and PV ertical), with the help of the
following Equation 4.2. The resulting pixel is called PHV .

PHV =
√
P 2

Horizontal + P 2
V ertical (4.2)

The resulting image of this composition is shown in Figure 4.17.

In the next step, two depth images are rendered. The first image consists of the scene
including all focus and context elements, which is shown in Figure 4.18 (left) and the
second depth image contains only focus elements, which is shown in Figure 4.18 (right).

52

4.2. Spatial Importance

Figure 4.16: Convolution of a grayscale intensity image and (left) a horizontal Sobel
kernel, which emphasizes horizontal edges, and (right) a vertical Sobel kernel, which
highlights vertical edges. Images produced using MATLAB 2016b [Mat16].

Figure 4.17: Combination of the horizontal and vertical Sobel convolution. Image
produced using MATLAB 2016b [Mat16].

Finally, the already mentioned per-pixel occlusion check is performed, depending on
individual depth texture texels. If a context texel occludes a focus texel, the color of the
resulting pixel is linearly interpolated between focus and context image. The interpolation
value is defined by the result of the combination of the horizontal and vertical edge
detection. The result of the ghosting procedure is shown in Figure 4.19.

This ghosting procedure especially highlights edges, which emphasizes the context struc-
ture on the one hand, and on the other hand, allows the user the analysis of focus elements
without any occlusions. Figure 4.20 shows a juxtaposition of classical visualizations and
renderings produced using our ghosting approach.

53

4. Spatio-Temporal Focus & Context for MD-Simulations

Figure 4.18: (left) Depth image consisting of all focus and context elements and
(right) depth image consisting of only focus elements. Renderings produced using
CAVER Analyst [Ana].

Figure 4.19: Final result of the ghosting procedure including highlighted regions where
ghosting is especially visible. Renderings produced using CAVER Analyst [Ana].

54

4.2. Spatial Importance

Figure 4.20: Three different examples visualizing the effect of (left) classical render-
ing without occlusion management and (right) ghosting. Renderings produced using
CAVER Analyst [Ana].

55

4. Spatio-Temporal Focus & Context for MD-Simulations

4.3 Temporal Importance
After the spatial composition of individual frames, the temporal importance is considered.
Our main goal was to decrease the duration of the MD-simulation and provide a more
compact playback of the animation. Again, the user can interact with the visualization
in real-time using a single or a combination of multiple importance functions. Thereby,
individual frames are skipped and the playback speed is adapted, depending on the
importance values of individual frames. If the temporal importance function is 1, the
simulation is played using the original playback speed. If the function is 0, the playback
speed is highly increased and if the importance value is between 1 and 0, the speed
is increased depending on interpolated speed-up values. Unfortunately, the removal of
individual frames disrupts the motion perception and increases motion blindness. There-
fore, we additionally apply motion blur that reduces this disruption and simultaneously
visualizes the speed of elements in a natural way.

The most important part of temporal importance is the use of different importance
functions that influence the adaptive fast-forward playback speed of an animated MD-
simulation. Inventing and implementing such functions itself was not part of this work.
Loading and combining such functions was an already implemented feature of the
CAVER Analyst [Ana] visualization toolkit. Part of our contribution was to extend this
manipulation of importance functions and provide an implementation that allows the user
to compute derivatives of such functions. Domain experts requested this functionality
during one of our presentations, because they were particularly interested in sections
where drastic changes in the functions occur.

Until now, we have always considered keyframes independently form each other. The
first step was determining which molecular elements are visible, per keyframe, using a
spatial importance function. Subsequently, we described a ghosting procedure, which is
necessary to prevent context structures from occluding focus elements. In the next step,
individual keyframes are no longer considered to be independent of each other. Instead,
they are combined to an animated visualization using a temporal importance function,
which introduces new challenges, which we will discuss in detail in the following.

The user can choose whether a single or a combination of multiple temporal importance
functions should be used. Depending on the chosen spatial importance function, we
analyze different molecular properties of either water molecules or ligands that can be
used as temporal guidance. All these features are calculated per keyframe and determine
the temporal importance value of this particular keyframe. Typical properties are:

Water molecules: According to Vad et al. [VBJ+17], the number of active, from
active, to active, and inside waters, or the number of waters that change between
states (Section 6.2 provides a detailed explanation of different types of water
molecules). Thereby, water molecules are categorized depending on whether they
reach the active site within a protein or not. Another molecular property, which is
suitable for temporal guidance is the root-mean-square deviation (RMSD) of atomic
positions from the protein.

56

4.3. Temporal Importance

Ligands: The distance of a ligand to the active site, the speed or stuckness of the
ligand, the change of the spatial position in X, Y, or Z direction, the distance of
the ligand to the surface of the protein, or the RMSD.

An example of an importance function is shown in Figure 4.21. In this particular case,
the importance function is influenced by the number of inside water molecules (colored
yellow). If no such molecules are present, the temporal importance value of this particular
keyframe is 0, if four molecules are visible, the function value is 0.5, and for the highest
number of eight molecules, the function value is 1. During the computation of such
functions, all individual keyframes of the MD-simulation are considered. The highest
number of inside waters is then assigned to an importance value of 1. If fewer molecules
are visible, the percentage is computed and assigned as importance value to this particular
keyframe. As already mentioned, other geometric properties could be used instead of the
number of individual inside water molecules.

Figure 4.21: Visualization of three different keyframes of an MD-simulation with varying
importance values depending on the number of visible inside waters (colored yellow).
(left) Keyframe 1: Contains no visible inside waters and has an importance value of 0.
(middle) Keyframe 65: Four visible inside waters and an importance value of 0.5. (right)
Keyframe 230: The highest number of eight visible inside waters and an importance
value of 1. Renderings produced using CAVER Analyst [Ana].

If the importance values of the three keyframes, shown in Figure 4.21, are then applied
to the adaptive playback speed of MD-simulations, this results in the following average
rendering and visibility durations:

Keyframe 1, with an importance value of 0, was rendered 9 times with an average
rendering time of 20.7 ms. This keyframe was visible to the user for the shortest
period of time. In total only 187 ms.

57

4. Spatio-Temporal Focus & Context for MD-Simulations

Keyframe 65 has an importance value of 0.5 and was rendered 18 times with an
average rendering time of 16.8 ms. Keyframe 65 was therefore visible to the user
for about 304 ms.

Keyframe 230, with an importance value of 1 was considered as highly relevant
and therefore rendered 87 times with an average rendering time of 10.7 ms. As a
result, keyframe 230 was visible for the longest period of time, namely 936 ms.

Adaptive playback speeds result in variable time savings, since unimportant keyframes
are visible for a shorter period of time and the user has more time to explore the most
relevant keyframes. This is, of course, highly dependent on the chosen importance
function. Figure 4.22 shows a comparison of total playback times using six different
temporal importance functions for exploring an underlying MD-simulation consisting of
1 000 keyframes. These results show an average time saving of 50–60 %.

Figure 4.22: Visualization of playback times using six different temporal importance
functions, which are necessary to explore an MD-simulation for water and protein
interaction consisting of 1 000 keyframes. No Guidance represents a non-adaptive playback
speed and assumes an importance of 1 for every keyframe of the simulation.

This temporal exploration can be used for any other arbitrary research task, for example,
ligand-residue interactions instead of water-protein interactions. Figure 4.23 shows an
example of the time savings for a longer MD-simulation consisting of 2 162 keyframes.
Using a temporal importance function, to explore this dataset, results in an average time
saving of 45 %.

4.3.1 Visibility Smoothing

Evaluating MD-simulations using a spatial importance function results in subsets of
visible focus and context elements per keyframe. These subsets contain all molecular
elements that are either in focus or context within this particular keyframe. This
assignment is performed independently of the previous or next keyframe. If a temporal

58

4.3. Temporal Importance

Figure 4.23: Comparison of seven different temporal importance functions used to explore
an MD-simulation for ligand and residue interaction consisting of 2 162 keyframes. Again,
No Guidance uses an equal playback speed for every keyframe.

importance function is then used for the adaptive playback of these keyframes, it is
important to prevent visual flickering, for example, if molecular structures only pop
up for a single keyframe. Therefore, this initially independent assignment of focus and
context elements needs to be modified depending on previous and future keyframes.
In the following, we will describe some special cases that explain why this additional
modification also referred to as smoothing of subsets of visible elements per keyframe,
is needed. The following examples refer to ligand-residue interactions, but are valid for
arbitrary molecular scenarios:

Case 1: A single residue approaches the ligand and in keyframe 2 and 7, the
distance to it is below a predefined threshold. If a residue is rendered only for
a single keyframe, it would pop up for a fraction of a second and immediately
disappear again. The user would perceive this as distracting visual interruption.
Therefore, the residue is smoothed-out and it will not be rendered. An example of
this case is shown in Figure 4.24. In this example, only the residue buto not the
ligand is displayed per keyframe.

Figure 4.24: Visualization of a smoothing operation where an individual residue would
unnecessarily attract the user’s attention, since it is only rendered for a fraction of a
second. (top) Visible residues before the smoothing. (bottom) Visible residues after the
smoothing. Renderings produced using CAVER Analyst [Ana].

59

4. Spatio-Temporal Focus & Context for MD-Simulations

Case 2: A single residue is close to the ligand and is therefore in focus. For two
keyframes (4, 5), the distance to the ligand increases and therefore the residue is no
longer in focus. Not rendering a residue for two keyframes means that the residue
will not be visible for a fraction of a second. This again causes a visual flicker and
distracts the user. Although the distance of a residue to the ligand is greater than
the defined threshold, we will still render the residue during these two keyframes to
prevent any distractions. An example of this case is shown in Figure 4.25.

Figure 4.25: Visualization of an example where a residue would not be rendered for a
fraction of a second. This would again unnecessarily attract the user’s attention. (top)
Visible residues before the smoothing. (bottom) Visible residues after the smoothing.
Renderings produced using CAVER Analyst [Ana].

Case 3: Starting from the beginning of the simulation, a single residue is located
close to the ligand. Then, the distance to the ligand increases (keyframe 4-8).
Within that time, the distance to the ligand is decreased once (keyframe 6) and
therefore it would be visible for a single keyframe. This means that the residue
will slowly fade-out and then suddenly becomes visible, before it becomes invisible
again. In order to prevent this flicker, we will not render the residue (in keyframe
6), although the distance to the ligand is below a chosen threshold. An example of
this case is shown in Figure 4.26.

Figure 4.26: Visualization of a smoothing operation where a residue becomes invis-
ible, suddenly pops up (keyframe 6), and then becomes invisible again. To prevent
a visual flicker, the residue will be smoothed out. (top) Visible residues before the
smoothing. (bottom) Visible residues after the smoothing. Renderings produced using
CAVER Analyst [Ana].

60

4.3. Temporal Importance

Case 4: This case represents a typical setting that does not require any smoothing.
From the beginning on, a residue is close to the ligand. Over time, the distance
increases until it is too far away from the ligand. As soon as the distance to the
ligand is greater than a chosen threshold, atom colors will fade-out to the context
color. An example of this case, without any smoothing, is shown in Figure 4.27.

Figure 4.27: Visualization of a (top) typical case where no visibility smoothing is required.
(bottom) Note that the residue is visible within the same keyframes, but the atom-colors
slowly fade-out. Renderings produced using CAVER Analyst [Ana].

4.3.2 Color Interpolation

Once visibility smoothing is completed, it is ensured that individual molecular structures
are visible continuously for a longer period of time. The minimum duration is dependent
on user preferences and can be changed during the evaluation of the MD-simulation. In
practice, a standard window size of five keyframes is used as default value. Nevertheless, if
an element is not visible starting from the beginning of the simulation, namely keyframe 1,
it will still pop up the first time it is rendered and suddenly disappear the last time it is
rendered. Because of this sudden pop up, a context element would unnecessarily attract
the user’s attention.

To reduce this visual distraction, the first and most obvious possibility would be alpha
blending. A blend function could be used, which changes the alpha values of individual
structures in such a way that they slowly fade-in in the beginning and then fade-out at the
end of their visibility. Unfortunately, alpha blending would interfere with the implemented
ghosting procedure since multiple objects are then rendered semi-transparently and this
would introduce additional problems concerning the rendering order. Instead, we added
an ease-in and ease-out function for color interpolations. During ease-in, the colors of a
molecule are slowly interpolated from the context color, by default it is gray (R=144,
G=144, B=144), to the actual focus colors, defined by the CPK model [Kol65]. An
example of this RGB ease-in color interpolation from a context color to individual CPK
colors is shown in Figure 4.28.

During ease-out, the colors of a molecule are interpolated vice versa. Instead of switching
the colors between two keyframes and within a fraction of a second, this process is again
done continuously. An example of an ease-out interpolation is shown in Figure 4.29.

61

4. Spatio-Temporal Focus & Context for MD-Simulations

Figure 4.28: Smooth ease-in color interpolation from gray, as context color, to individual
atom colors from the CPK model. Renderings produced using CAVER Analyst [Ana].

Figure 4.29: Smooth ease-out color interpolation from individual CPK atom colors, to
the context color gray. Renderings produced using CAVER Analyst [Ana].

In the following, we will explain the concept of color interpolation that is independent
of the playback speed and the number of keyframes, a residue is visible. The solution
was a smooth color interpolation done in visualization time instead of keyframe time. As
soon as a residue is rendered for the first time, we assign an individual stopwatch. This
timer is then used for the interpolation of all atoms, the residue consists of. Using this
keyframe independent time scale, any duration for ease-in and ease-out can be defined.
After informal inspection, we set the ease-in and ease-out interval to 500 ms. The ease-in
as well as the ease-out interval can vary and different durations can be used. Using this
approach, the color interpolation is independent of the number of displayed keyframes.

Additionally, Hermite interpolation was used to provide basic functionality for color
interpolation. A Hermite interpolation can be computed using a cubic polynomial, i.e.,
a polynomial of degree three. In addition to the starting and end point, in our case
the colors C1 and C2, it requires a starting tangent T1, an ending tangent T2, and an
interpolation value x in the range of [0,1]. During ease-in, C1 is the context color gray
and C2 represents the final CPK color:

CHermite = (2x3−3x2 +1)·C1 +(x3−2x2 +x)·T1 +(−2x3 +3x2)·C2 +(x3−x2)·T2 (4.3)

Inspiration for our ease-in function comes from Penner [Pen] and Renaudeau [Ren]. In
the final visualization a quadratic ease-in function, shown in Equation 4.4, was used.

f(x) = x2 (4.4)

A plot of the function from Equation 4.4 is shown in Figure 4.30.

62

4.3. Temporal Importance

Figure 4.30: Quadratic ease-in function inspired by Penner [Pen] and Renaudeau [Ren].
Graph plotted using MATLAB 2016b [Mat16].

A general formula for linearly mapping a value xAB within the interval [A, B] to a new
value xab in the interval [a, b] is the following Equation 4.5:

xab = (xAB −A) · (b− a)
(B −A) + a (4.5)

In order to be able to access the ease-in function depending on the elapsed time, we
have to perform a linear mapping first. FT ime represents the default duration of the
ease-in in milliseconds, which is in our case 500 ms. This corresponds to a mapping
from [0, FT ime], to an interval with a range from [0,1]. The following equation provides a
formal definition:

[A,B] 7→ [a, b] := [0, FT ime] 7→ [0, 1]

This mapping can be done using Equation 4.5. Initially, xAB is in the range [0, FT ime]
and represents the elapsed time since the ease-in process was started:

xab = (xAB − 0) · (0− 1)
FT ime − 0 + 0 = xAB

FT ime

During the next step, the result of this mapping xab is used to evaluate the quadratic
ease-in function from Equation 4.4. The result of this evaluation f(xab) is already
normalized and can therefore be directly used for the Hermite color interpolation from
Equation 4.3.

In the following, we will provide an example of a residue, which is rendered nine times
within 500 ms. Note that the time passed is just a representative of the passed time
in milliseconds. In fact, the function will be executed much more often than only nine

63

4. Spatio-Temporal Focus & Context for MD-Simulations

times within 500 milliseconds, especially since our focus & context visualization runs in
real-time with an average frame rate of about 100 FPS (Chapter 6 contains the exact
hardware specifications and the tested datasets). The calculation results of this example
are shown in Table 4.1 and the color transition is shown in Figure 4.31.

Frame 1 2 3 4 5 6 7 8 9
time (in ms) 0 75 140 205 300 365 410 485 545
xab 0 0.15 0.28 0.41 0.6 0.73 0.82 0.97 1
f(xab) 0 ∼0.01 ∼0.08 ∼0.17 0.36 ∼0.52 ∼0.66 ∼0.93 1

Table 4.1: Ease-in calculation results for xab and f(xab) using an example consisting of
nine rendered frames. The time value corresponds to possible elapsed times in milliseconds
that have passed since the ease-in process was started. The ease-in duration is additionally
limited to 500 milliseconds and therefore xab from frame 9 is clamped to 1 (colored red).
Note that f(xab) was again rounded to two decimals.

Figure 4.31: Example of a quadratic ease-in color interpolation, which is limited to
500 milliseconds instead of a certain number of visible keyframes. In this example the
interpolation is performed nine times. Renderings produced using CAVER Analyst [Ana].

As soon as a residue is rendered for the second last keyframe, the ease-out process is
started. Note that the ease-out color interpolation is independent from the number of
keyframes and is only dependent on a predefined duration in milliseconds. Again, a
stopwatch timer in combination with a predefined ease-out duration is used to fade-out
individual residues. By default, the ease-out duration is 500 milliseconds. In the final
visualization, a quadratic ease-out function, shown in Equation 4.6, was used:

f(x) = (2− x)x (4.6)

A plot of this function is shown in Figure 4.32. Note that the ease-out function still
increases from 0 to 1 and therefore the starting color C1 and C2, and their tangents
T1 and T2, need to be swapped. C1 is then the focus CPK color and C2 represents the
context color gray.

Finally, we will provide an example with an ease-out duration of 500 milliseconds, within
which a residue is rendered 11 times. The calculated results are shown in Table 4.2 and
a visualization of this example is shown in Figure 4.33.

64

4.3. Temporal Importance

Figure 4.32: Quadratic ease-out function inspired by Penner [Pen] and Renaudeau [Ren].
Graph plotted using MATLAB 2016b [Mat16].

Frame 1 2 3 4 5 6 7 8 9 10 11
time (in ms) 0 50 105 145 195 250 285 340 395 455 505
xab 0 0.1 0.21 0.29 0.39 0.5 0.57 0.68 0.79 0.91 1
f(xab) 0 ∼0.19 ∼0.38 ∼0.5 ∼0.63 0.75 ∼0.82 ∼0.9 ∼0.96 ∼0.98 1

Table 4.2: Ease-out calculation results for xab and f(xab) using an example consisting of
11 keyframes. The time value corresponds to possible elapsed times in milliseconds that
have passed since the ease-out process was started. The ease-out duration is additionally
limited to 500 milliseconds, therefore xab from frame 11 is clamped to 1 (colored red).
Note that f(xab) was again rounded to two decimals.

Figure 4.33: Example of a quadratic ease-out color interpolation, which is limited to
500 milliseconds instead of a certain number of visible keyframes. In this example the
interpolation is performed 11 times. Renderings produced using CAVER Analyst [Ana].

4.3.3 Calculation of the Derivative

In the following, we will describe the benefits of calculating the derivative of an importance
function and how it can be computed. The calculation of the derivative of one or a
combination of multiple importance functions is necessary, if domain experts want to
investigate drastic changes within such functions. An example could be that the speed of
a ligand changes abruptly.

65

4. Spatio-Temporal Focus & Context for MD-Simulations

Although every importance function appears to be continuous, it is a discrete evaluation
of importance values per keyframe. Therefore, the approximation of the derivative f ′(x)
of such a function f(x) can be calculated using the symmetric difference quotient, which
is described in Equation 4.7. x represents the domain of the function and h the distance
between two discrete function values:

f ′(x) = f(x+ h)− f(x− h)
2h (4.7)

A visualization of the computation of an approximated derivative, using the symmetric
difference quotient, is shown in Figure 4.34.

Figure 4.34: Visualization of the symmetric difference quotient. It shows the secant line
that is used to approximate the slope of the tangent.

The smaller h is, the better the tangent is approximated. To simplify the computation
of the derivative, f(x + h) represents the importance value of the next keyframe and
f(x − h) represents the importance value of the last keyframe. Importance functions
are limited to the interval [0,1] and since we are interested in both, positive as well as
negative slopes, the absolute value |f ′(x)| is used as importance value. Figure 4.35 shows
an example of an importance function, consisting of 240 keyframes, and its derivative.

Figure 4.35: Visualization of (top) a normalized importance function and (bottom)
its normalized derivative. Additionally nine peaks of the derivative are highlighted.
Importance function and derivative provided by CAVER Analyst [Ana].

66

4.3. Temporal Importance

4.3.4 Motion Blur

Visibility smoothing of individual keyframes, including ease-in- and ease-out functions
for color interpolations already try to prevent visual interrupts that attract the user’s
attention. Unfortunately, adaptive fast-forward playback of the simulation can still
disrupt the motion perception and increase change blindness. Therefore, we additionally
apply motion blur that on the one hand, reduces visual disruption and on the other hand,
helps to better understand the movement of atoms and molecules, as objects leave visible
traces. In addition, we will mention how motion blur can reduce negative side effects like
change blindness.

Navarro et al. [NSG11] define motion blur as visible flow marks representing trajectories
of objects. It is an essential reference, already known from our human visual system.
According to the authors [NSG11], motion blur is commonly perceived as a very natural
and pleasant visual effect since it helps our brain to better understand object movements.
In contrast to recording devices such as analog or digital cameras and video cameras,
where motion blur is created automatically, in rendered images or videos it must be
simulated. The reason why this effect does not appear in rendered images is that
such images correspond to recordings made with an infinitely short exposure time.
According to Navarro et al. [NSG11], motion blur rendering can be divided into the
following approaches: analytic methods, geometric substitutions, Monte Carlo methods,
post-processing methods, hybrid methods, and physically accurate methods. The most
appropriate approach for our visualization was the post-processing method. It represents
a technique where the rendering of motion blur is independent of the level of detail
within a scene. Instead of trajectories of individual objects, only the pre-rendered images,
stored as textures, are used to blur the image, which is currently rendered. This makes
it especially suitable for real-time applications.

In the following, we present a theoretical explanation of how motion blur was integrated
into our CAVER Analyst [Ana] extension. It is performed after the ghosting procedure
and therefore represents the last part of our rendering pipeline (the entire pipeline is
explained in detail in Chapter 5).

An overview of the blurring algorithm is shown in Figure 4.36.

The blurring procedure can be divided into the following five components:

1. Current frame FCurrent : Motion blur represents the final step of our rendering
pipeline and FCurrent is therefore the direct output of the ghosting procedure.

2. Accumulated frames FAccum : They represent a composition of all continuously
rendered and subsequently blended frames from the past.

3. Weight function: The basis of the weight function is on the one hand, the
temporal importance function, which defines the playback speed of the animated
simulation, and on the other hand, a GUI slider. If the temporal importance value
WF rame of a keyframe is low, the playback speed and additionally the motion blur
intensity is increased. The GUI slider value WSlider is optional and not necessarily

67

4. Spatio-Temporal Focus & Context for MD-Simulations

Figure 4.36: Overview of the motion blur procedure which uses a weight function to
blend between the currently rendered frame and already accumulated frames. The final
result is then stored as accumulated frame and used for the next iteration.

needed for the actual exploration. It allows the user to manually increase or
decrease the overall strength of motion blur. Equation 4.8 provides an overview of
the composition of the weight function:

WSum = WF rame +WSlider (4.8)

WF rame is thereby in the range [0, 1]. The range of WSlider was chosen empirically.
We defined a range (1,2] including 1.1 as default slider value. To prevent numerical
errors evaluating Equation 4.9, WSum is clamped to the interval (1,2]. For example,
an error could occur if WSum is exactly 1. Note that the upper bounds of both
intervals, WSlider and WSum, could be increased arbitrarily.

4. Blend function: The blend function represents the main part of the procedure.
Using WSum, it interpolates between the currently rendered frame FCurrent and
the accumulated frames FAccum. Equation 4.9 provides the used blend function:

FBlurred = FAccum ·
1

WSum
+ FCurrent ·

WSum − 1
WSum

(4.9)

5. Rendering result FBlurred : The final result represents the composition, which
will be displayed on screen. Additionally, in preparation for the next rendering
cycle FAccum is overwritten by FBlurred.

68

4.3. Temporal Importance

Figure 4.37 shows a visualization of three different keyframes of an MD-simulation with
unequal importance values.

Figure 4.37: Visualization of three different example of motion blur intensities. (left)
Keyframe 48 with an importance of 1 and a WSum of 2. (middle) Keyframe 59 with an
importance 0.5 and a WSum of 1.6. (right) Keyframe 107 with an importance of 0 and
WSum of 1.1. Renderings produced using CAVER Analyst [Ana].

Next, we will provide the exact calculation results of the above described keyframes:

Keyframe 48 has a temporal importance value WF rame of 1. In combination with
a default slider value WSlider of 1.1 and after the clamping to an interval of (1,2]
this results in an overall weight WSum of 2. Therefore, the two frames FAccum and
FCurrent will be blended like the following:

FBlurred = FAccum · 0.5 + FCurrent · 0.5

Assuming a real-time frame rate of at least 60 FPS, or in our case an average frame
rate of 100 FPS, this results in a visually imperceptible blurring.

Keyframe 59 has an importance value WF rame of 0.5. After the clamping and in
combination with the default slider weight WSlider, this results in an overall weight
WSum of 1.6. The blending will therefore be performed as follows:

FBlurred = FAccum · 0.625 + FCurrent · 0.375

69

4. Spatio-Temporal Focus & Context for MD-Simulations

Using the GUI slider, the user can additionally increase or decrease the blurring
strength. Note that an increased slider weight results in a lower motion blur
intensity. Assuming that the slider value was manually changed to a new weight
WSlider of 1.3, this results in an overall weight WSum of 1.8 and the following blend
function:

FBlurred = FAccum · 0.5̇ + FCurrent · 0.4̇

Keyframe 107 has an importance value WF rame of 0. Using a default slider
value WSlider of 1.1 results in an overall weight WSum of 1.1 and the following
blend function:

FBlurred = FAccum · 0.9 + FCurrent · 0.1

To prevent motion blur from having a negative impact on the exploration of an MD-
simulation, it is only activated if the position of the camera is not changed by the user. As
soon as the user interacts with the visualization by changing the viewpoint, motion blur
is deactivated. Otherwise, this would lead to distracting and disturbing motion streaks
since flow marks are no longer the result of object movements but the consequences of
camera changes. Especially orbital rotations around objects highly suffer from these
negative effects.

As mentioned in the beginning of this section, motion blur could additionally help to
reduce different negative effects like change blindness, which was introduced by Scott-
Brown et al. [SBC07] based on security camera records. It is a negative effect that can
result while observing motion. It describes problems that arise through short interruptions
or cuts in videos, blinking, or any other visual interruptions. People are then no longer
able to perceive even major visual changes.

In 1998, Simons and Levin [SL98] demonstrated this in a user-study. Participants were
shown sequences of pictures. Between these pictures, they were shown a gray screen for
80 milliseconds. This short interruption was long enough that most of the participants
were not able to see even large objects, like buildings, move, appear, or disappear.

Unfortunately, there are also negative side effect of using motion blur. Most obviously, it
is the loss of fine details since parts of the scene are blurred. Motion blur can therefore
be an undesirable effect if scenes contain a very high degree of spatial details that need
to be perceived and processed by the user. We consider this to be negligible because the
geometric level of detail has already been reduced using a spatial importance function. In
addition, the playback speed of keyframes is only increased if their temporal importance
value is less than 1 and therefore only less important keyframes are blurred.

70

CHAPTER 5
Implementation

This chapter focuses on implementation details of the presented interactive real-time
visualization of MD-simulations. We will provide an overview of programming and shader
languages that were used to implement required features and functionality. Additionally,
we will explain why a pre-computation step is required after the import of MD-simulation
keyframes and why this pre-computation has to be recomputed if the spatial importance
function changes during the exploration. In contrast, we will present the reason why the
temporal importance function does not have to be recalculated even if a single function
or a combination of several functions are changed.

The underlying framework, CAVER Analyst [Ana] 2.0 BETA, is based on the Java
platform JDK 1.8, NetBeans IDE 8.2, and was developed using the NetBeans platform
nb731. Furthermore, OpenGL was used as graphics API and the corresponding vertex,
geometry, and fragment shaders were written in GLSL.

An overview of the entire system, representing our visualization pipeline, is shown in
Figure 5.1. Our spatio-temporal focus & context visualization consists of the following
six necessary steps: First, the import of already computed MD-simulation keyframes.
Second, the evaluation of the spatial importance function, which creates subsets of focus
and context elements per keyframe. Third, visibility smoothing which guarantees that
individual objects are visible for a predefined number of keyframes. Fourth, visibility
management through ghosting, which prevents occlusions of focus elements. Fifth, the
evaluation of the temporal importance function, which defines how often a keyframe is
rendered. Sixth, motion blur to reduce visual clutter and provide visual feedback of the
currently used playback speed.

Similar to Chapter 4, we will divide the explanation of implementation details into
Section 5.1 Spatial Importance and Section 5.2 Temporal Importance.

71

5. Implementation

Figure 5.1: Overview of the entire visualization pipeline consisting of six important
steps (from top to bottom): (Keyframes) Initially, a pre-computed dataset of MD-
simulation keyframes is imported. (Spatial Importance) Next, the user defines a spatial
importance function that is used to create subsets of visible focus & context elements
per keyframe. (Visibility Smoothing) Based on these subsets, visibility smoothing is
performed. (Visibility Management) During the next step, ghosting is performed based
on the already colored molecular structures. (Temporal Importance) The next step is
dependent on the temporal importance function. The more important a keyframe is, the
more often the keyframe is rendered. (Motion Blur) Finally, already rendered images are
blurred depending on the currently used playback speed.

72

5.1. Spatial Importance

5.1 Spatial Importance

After importing the MD-simulation keyframes, the user can select a spatial importance
function using an already described Java Swing GUI element provided by CAVER
Analyst [Ana]. Depending on the chosen spatial importance function, we subsequently
assign default rendering strategies to elements. All representation types can be changed
arbitrarily by the user during runtime. To enable this, we will present all required
implementation details in the next subsections.

5.1.1 Rendering Strategies for Focus & Context

The functionality, to be able to arbitrarily change rendering strategies during runtime, was
implemented using two java.util.HashMap<Integer, Set<Residue>> collections. One is
used for focus and one for context elements. The Residue class represents a container where
single amino acid residues are stored in. Among other properties, it contains the list of
atoms it consists of, the chain it belongs to, the exact residue type, and the sequence num-
ber. The java.util.HashMap.entrySet() contains a java.util.HashSet<Residues> collec-
tion of all assigned residues. The integer values stored in the java.util.HashMap.keySet()
represent individual keyframes of an MD-simulation. The size of the keySet represents
the number of imported keyframes. An integer value, representing the currently displayed
MD-simulation keyframe, can then be used to access all elements associated with this
keyframe. A visualization of our HashMap collection, used to store molecular elements
per keyframe, is shown in Figure 5.2.

Figure 5.2: Visualization of a HashMap collection, which is used to store and access
either focus or context elements. The keySet contains the number of the corresponding
MD-simulation keyframe and the entrySet contains HashSets of residues that are assigned
to these keyframes.

73

5. Implementation

This HashMap data structure is advantageous because the selected rendering strategy
is independent of the collection, since both HashMap collections only store high-level
information about which elements need to be rendered per keyframe. As a result, the
rendering strategy can be changed at runtime and no further pre-computations are
necessary. In contrast to this, the preprocessing must be recomputed if the spatial
importance function changes. For example, if the user wants to focus on different
molecular elements. This is necessary since the two HashMap collections, for focus and
context elements, otherwise contain wrong entrySets of residues.

5.1.2 Visibility Management

While computing the spatial importance of visually complex and dense molecular scenes,
the most important step is the ghosting procedure. In the following, we will present all
required implementation details.

To perform ghosting, two frame buffer objects (FBO) that provide both, a color and a
depth attachment, are necessary. The first FBO is used to render all focus elements and
the second FBO is used to render both, focus and context elements. The four resulting
textures, two depth and two color textures, are then passed to a fragment shader.
Depending on the depth values of the two depth textures, color pixels are composed
using an OpenGL fragment shader. In the shader, the following three possibilities, which
are additionally shown in Figure 5.3, are checked by if-else statements:

1. The depth value of the focus pixel is exactly 1, i.e., the distance to the far plane.
This means that there is no focus element and therefore, the output fragment of
the shader only consists of the pixel from the context color texture.

2. The depth value of the focus pixel is smaller than the depth value of the context
pixel. In this case, the focus pixel occludes the context pixel. The output of the
fragment shader is therefore only dependent on the focus color texture.

3. The depth value of the context pixel is smaller than the depth value of the focus
pixel. This time, a context pixel occludes the focus pixel which corresponds to a
situation where ghosting is required. Therefore, the context color pixel including
the 8-connected neighbors are converted to gray values and convoluted with a
vertical- and horizontal Sobel kernel. Next, the results are combined using a linear
interpolation between the two pixels from the focus and context color texture. This
result represents the return value of the fragment shader.

5.2 Temporal Importance

In the following section we will present implementation details of our CAVER Analyst
[Ana] extension regarding the temporal importance function. We will explain how
visibility smoothing, keyframe independent color interpolation, and motion blur can be
implemented using Java and OpenGL.

74

5.2. Temporal Importance

Figure 5.3: Comparison of three different cases, the fragment shader has to check using
if-else statements: (Case 1) The depth value of the focus depth texture is 1 which does
not require any blending. (Case 2) The focus depth value is smaller than the context
depth value and therefore no ghosting is required. (Case 3) The context depth value is
smaller than the focus depth value and therefore ghosting is required.

5.2.1 Visibility Smoothing

In the following, we will present the three essential implementation steps that were
necessary to perform visibility smoothing. In addition, a visualization of the required
data structures, including some example values, are shown in Figure 5.4.

1. Initially the number of keyframes, a residue is visible, is calculated and stored
in a java.util.HashMap<Integer, Map<Residue,Integer>> collection. The keySet
corresponds to the MD-simulation keyframe. The entrySet contains HashMaps of
all residues that are visible within that particular keyframe including an integer
value storing the number of keyframes this residue is still visible. This part of the
algorithm is shown in Figure 5.4 (left).

2. During the next step, the algorithm iterates over the collection and if the number
of visible keyframes is above a chosen threshold, by default five keyframes, the
residues are copied to a java.util.HashMap<Integer, Set<Residue>> collection
containing the smoothed residues. In contrast, if this integer threshold is below
the default visibility duration, residues are discarded. The second part of the
algorithm, including the collection, which stores the smoothed residues, is shown in
Figure 5.4 (right).

3. Finally, the algorithm searches for sections where residues are not visible for less
than the default threshold of five keyframes. Residue 141 PHE represents an
example, which is shown in Figure 5.4. This residue is visible from keyframe 1–26
and from keyframe 28–100. The third step of the algorithm, for example, adds
residue 141 PHE to the entrySet of keyframe 27.

75

5. Implementation

Figure 5.4: Visualization of the collections used for visibility smoothing. (left) A HashMap
that is created during the first step of the smoothing procedure and stores collections
of residues including the total number of keyframes these residues are visible. (right)
A HashMap is created during the second step of the smoothing procedure. It contains
smoothed residues, which are all visible for at least the CAVER Analyst [Ana] default
length of five keyframe. This HashMap is subsequently used to detect gaps where residues
are not rendered for less than five keyframes. An example of such a gap is Keyframe 27.

5.2.2 Color Interpolation

The following approach was used for the ease-in and ease-out color interpolation. A
java.util.HashMap<Residue, StopWatch> collection is used to assign stopwatches to
individual residues. The keySet consists of single residues and the entrySet contains the
corresponding instances of the org.apache.commons.lang3.time.StopWatch class. During
the rendering process, this collection can then be used to find out how much time has
already passed since the ease-in or ease-out procedure started. Since color interpolation is
only dependent on the elapsed time, this value can be used for the Hermite interpolation.
As soon as the ease-in or ease-our procedure is finished, the timers are stopped and the
entry is removed from the collection. A visualization of the collection, used to assign
individual stopwatches to residues, is shown in Figure 5.5.

76

5.2. Temporal Importance

Figure 5.5: Visualization of a HashMap collection, which is used to assign individual
StopWatch timers from the entrySet to residues from the keySet.

5.2.3 Motion Blur

The following section describes how motion blur was implemented. Inspiration for the
technical implementation of motion blur comes from accumulation buffers, which are
widely used in OpenGL. This approach was adapted according to the underlying CAVER
Analyst [Ana] framework and provides a tailor-made implementation to our requirements.
In our case, three different FBOs are used. To simplify the explanation, they are called
FBOMotionBlur, FBOAccum, and FBOCurrent and the following implementation steps
are required:

1. The first step is binding and clearing FBOMotionBlur. It is the render target and
stores the result of the motion blur procedure. Next, the color attachment of
FBOCurrent is bound since it contains the rendering result of the current render
cycle. If FBOAccum already contains accumulated images, its color attachment
is bound. Otherwise, the color attachment from FBOCurrent is also used once as
accumulation FBO placeholder until FBOAccum contains a valid color attachment.
Next, a uniform float value, representing the blend weight, is passed to the fragment
shader that subsequently performs the blending.

2. During the next step, FBOAccum is bound and cleared. Subsequently, the color
attachment of FBOMotionBlur is bound as it already contains the final blended
image. Then, a copy program is executed to copy and overwrite the color attachment
of FBOAccum. This serves as preparation for the next render cycle.

3. The color attachment of FBOMotionBlur is then displayed on the screen which
completes the motion blur procedure.

77

CHAPTER 6
Use Cases

The following chapter presents two possible real-world use cases, which were created
in collaboration with domain experts from the Loschmidt Laboratories in Brno, Czech
Republic. These examples illustrate how diverse and varying MD-simulations can be
and therefore how adaptive our visualization approach must be. Section 6.1 presents
the first use case, which explores the influence of individual residues on the ligand and
Section 6.2 presents the second example, which examines individual water molecules
and how they interact with a protein. Both use cases have already been presented
twice, to multiple researchers, to ensure that they improve their workflow, allow them
to develop new hypotheses more efficiently and faster, and gain novel insights into
MD-simulation datasets.

A fundamental requirement is that the exploration of the simulation can be done in
real-time. According to Akenine-Möller et al. [AMHH08], 15 FPS are at least required
for real-time applications, but most video games aim for 60 FPS or more. The authors
[AMHH08] additionally state that starting from 72 FPS differences to higher FPS are
no longer detectable. If the user wants to interact with the visualization, this should
be possible without FPS drops or additional waiting times. For example, if rendering
strategies of individual elements are changed, the strength of motion blur is adapted, the
color of objects is changed, or the importance function is modified. In addition, it should
be possible that users can freely move the camera and thereby always have the best view
of focus elements without having to wait for additional computations.

The basic procedure for both use cases is the following: The user loads a dataset of an
MD-simulation consisting of Protein Data Bank (PDB) files. It represent a standard
file format containing atoms and atomic coordinates from macromolecules. Next, focus
and context elements are chosen using a spatial importance function. Afterwards, the
preprocessing is started which analyzes the whole simulation frame by frame. Once the
preprocessing is completed, the user can select a single or a combination of multiple

79

6. Use Cases

temporal importance functions from a list. As soon as a function is selected, the MD-
simulation can be explored using an adaptive playback speed and all interactions can be
performed in real-time.

The following operating system and hardware were used for the analysis of the use cases:
Operating system: 64-bit Windows 7 Home Premium
CPU: Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz
GPU: NVIDIA GeForce GTX 1070 with 8 GB memory
RAM: 16 GB

6.1 Influence of Residues on the Ligand

The following use case should help to investigate how residues interact with a ligand.
This practical example of an MD-simulation is based on a protein from The Protein Data
Bank [BWF+], which is called dhaa and consists of 2 162 simulation keyframes (∼370 KB
per keyframe and a total size of ∼785 MB), 316 residues, 293 amino acid residues, 23
ligands, and 4 684 atoms. The ligand in focus is named 294 DCP and consists of 5 carbon,
6 hydrogen, and 1 oxygen atom(s).

The first use case can be defined by the following properties:

Research question: How do residues that are close to the ligand influence its
movement, interaction, and binding with other molecules?

Spatial focus: Ligand (294 DCP).

Temporal focus: For this use case, a (smoothed) combination of the stuckness
and speed of the ligand is used as temporal focus.

Spatial focus area: The area is defined by residues surrounding the ligand whose
van der Waals radii overlap is greater or equal to -0.4 Å, as recommended by UCSF
Resource for Biocomputing, Visualization, and Informatics [Chi].

Context: The whole protein.

Rendering strategy focus: The ligand is rendered using either a simplified sticks
or a more detailed balls & sticks representation, in combination with the CPK
model for atom colors.

Rendering strategy focus area: Surrounding residues are also rendered using
either a simplified sticks or a detailed balls & sticks representation. Similar to the
ligand, the CPK model is used for coloring atoms.

Rendering strategy context: The protein in context is rendered using a simpli-
fied ribbon representation with a uniform coloring chosen by the user.

As mentioned at the beginning, the next step after selecting focus and context elements
is a one-time preprocessing step. The times, which are required for this particular use
case, depending on the number of imported MD-simulation keyframes, are shown in

80

6.1. Influence of Residues on the Ligand

Figure 6.1. For example, if all 2 162 keyframes are imported and preprocessed, it takes
about 69 seconds. Additionally, it shows that the required times rise exponentially with
increasing numbers of keyframes, since keyframes are not simply processed individually,
but also in relation to previous and future keyframes.

Figure 6.1: Visualization of the required duration of the preprocessing on a logarithmic
time scale. The duration was measured using different numbers of keyframes and
additionally, a trendline shows the exponentially increasing time requirements.

Once the preprocessing is completed, the user can interact with the visualization in
real-time. Figure 6.2 shows a visualization of the FPS achieved on average. As the number
of keyframes increases, the average number of FPS settles at around 100 FPS. However,
it is interesting that especially a very short selection of the MD-simulation consisting of
10 keyframes provides a lower number of average FPS, namely 83 FPS. This is due to
the fact that especially in this case, the color interpolation never stops, since an ease-in
is always immediately followed by an ease-out. Constantly interpolating colors of atoms
requires more computing time and therefore lowers the number of frames-per-second.

Figure 6.2: Overview of average numbers of FPS while interacting with the visualization
of the MD-simulation. Additionally, a line marker showing the minimum frame rate of
60 FPS, as lower threshold for real-time applications, is displayed.

81

6. Use Cases

Finally, two different visualization results of the MD-simulations are shown. The first
example is shown in Figure 6.3 and it visualizes a detailed rendering of the ligand
using a balls & sticks representation and a more simplified sticks rendering strategy for
surrounding residues. All residues and the ligand are colored using the CPK color model.
The protein is rendered using a simplified cartoon representation and a uniform coloring.
Furthermore, the importance functions are selected according to the defined use case
properties: a smoothed combination of the speed and stuckness of the ligand.

Figure 6.3: Visualization of the first use case using a detailed balls & sticks rendering
strategy for the ligand, a simplified sticks rendering strategy for surrounding residues,
and a simplified cartoon representation for the context protein. The ligand and residues
are colored using the CPK model and the context protein is colored using a uniform
coloring. The used importance function is a combination of speed and stuckness of the
ligand and the combined function is additionally smoothed. Graphical user interface and
rendering result of CAVER Analyst [Ana].

82

6.1. Influence of Residues on the Ligand

The second example is shown in Figure 6.4. Instead of the ligand, it emphasizes sur-
rounding residues, which are rendered using a space-filling representation in combination
with the CPK color model. This time, the ligand and the surrounding context protein
are simplified. The ligand is rendered using a sticks representation and the protein
is rendered using a cartoon representation. Both are colored with different uniform
colorings. Similarly to the first example, the speed and stuckness of the ligand define the
importance function, but this time it is not smoothed and therefore the exact calculation
of the temporal importance function is used as playback speed.

Figure 6.4: Another visualization of the first use case using a simplified sticks represen-
tation and a uniform coloring for the ligand. Surrounding residues are rendered using
a detailed space-filling representation in combination with the CPK color model. The
protein is again simplified using a cartoon representation but a different uniform color
was selected. The importance function is, similar to the last example, a combination
of ligand speed and stuckness, but now the resulting function is no longer smoothed.
Graphical user interface and rendering result of CAVER Analyst [Ana].

83

6. Use Cases

6.2 Influence of Waters on the Protein
The second use case was inspired by a recent publication by Vad et al. [VBJ+17], which
focuses on water flows through proteins. Therefore, the protein is subdivided into three
different parts: The first part is called active site or focus region, which represents the
region inside a protein where a chemical reaction, like a binding, takes place. The second
part is called inner region, which represents the entire inside of a protein. The last part is
called outer region, which represents the region outside a protein. An example is shown
in Figure 6.5.

Figure 6.5: Visualization of different regions of interest within a protein. The color of a
path indicates the type of a water molecule: (Gray) Outside waters or waters that never
reach the active site. (Red) To active waters entering the protein. (Green) Active waters
within the active site. (Orange) Inside waters within the protein but outside the active
site, and (Blue) From active waters leaving the protein. Image from Vad et al. [VBJ+17].

For this use case, we have reused the watergate color model, introduced by Vad et
al. [VBJ+17]. Additionally, we render active, inside, to active, and from active waters
using a detailed balls & sticks rendering strategy as they represent the focus of the analysis,
and outside waters using a simplified sticks rendering strategy since they only provide
additional context information. Figure 6.6 shows an overview of the used rendering
strategies and colors.

Figure 6.6: Visualization of different states of water molecules. Gray outside waters are
simplified using a sticks representation and waters that are already inside the protein
are rendered using a detailed balls & sticks representation. The coloring is similar
to the color model introduced by Vad et al. [VBJ+17]. Renderings produced using
CAVER Analyst [Ana].

84

6.2. Influence of Waters on the Protein

This use case examines how individual water molecules interact with a protein. It is based
on Protein 1cqz, from The Protein Data Bank [BWF+] and consists of 8 799 residues,
310 amino acid residues, 8 488 water residues, 1 ligand, and 30 457 atoms. The total
length of the observed MD-simulation is 1 000 keyframes (∼2.47 MB per keyframe and a
total size of ∼2.41 GB).

The second use case can be defined by the following properties:

Research question: Which, when, where, and how many waters reach the active
site within a protein? How long do they stay there? What is their exact movement?
When and where do they leave the protein again?

Spatial focus: According to the definition of Vad et al. [VBJ+17], the spatial
focus is on the following waters: active, inside, to active, and from active waters
including the spatial position of waters if they change from one state to another.

Temporal focus: In this use case, multiple temporal importance functions or
combinations are used: First, an importance function that is dependent on the
visible number of from active and to active waters. Second, an importance function
that indicates the amount of water that changes between two states. Third, the
distance of waters to the active site and the RMSD of the protein.

Spatial focus area: According to the definition of Vad et al. [VBJ+17], the spatial
focus area is defined by outside waters, or none.

Context: The whole protein.

Rendering strategy focus: Waters that are inside the protein are rendered using
a detailed balls & sticks representation. If the focus is on waters that change states,
a space-filling representation is used instead. Water molecules in focus are colored
using the watergate color model introduced by Vad et al. [VBJ+17].

Rendering strategy focus area: Waters that are outside of the protein are
rendered using a simplified sticks representation. In this case either the CPK model,
the watergate color model, or a uniform coloring depending on user preferences is
used. Optionally, the user can hide context waters so that they are not rendered.

Rendering strategy context: The protein is rendered using a simplified ribbon
representation with a uniform coloring chosen by the user.

Again, the next step after defining focus and context is the one-time preprocessing. The
duration required for this step is shown in Figure 6.7. Similar to the pre-computation time
required for the first use case, the duration of the second use case also rises exponentially
the more keyframes are considered.

Figure 6.8 shows the FPS achieved on average including a line marker for the minimum
frame rate of 60 FPS. Thereby, it is clearly visible that our visualization can be accessed
in real-time and even a large amount of keyframes can be explored easily.

85

6. Use Cases

Figure 6.7: Visualization of the amount of time spent on the pre-computation of the
MD-simulation using different numbers of keyframes. A logarithmic time scale is used
for the measured time in milliseconds and an exponential trendline shows the increasing
time requirements.

Figure 6.8: Visualization of the average number of FPS including a line marker showing
the minimum frame rate of 60 FPS, which we aim for as lower threshold for real-time
applications. The number of average FPS settles constantly at around 100 FPS.

Finally, to complete this chapter, we will present two examples of possible results of the
second use case. The first example is shown in Figure 6.9. Active, inside, to active, and
from active waters are rendered using a detailed balls & sticks representation and outside
waters are rendered using a simplified sticks representation. All waters are colored using
the watergate color model and the protein is rendered using a simplified green cartoon
representation. The importance function is defined according to the above mentioned
properties of this use case: a combination of the number of to active and from active
waters. Additionally, the resulting temporal importance function is smoothed.

86

6.2. Influence of Waters on the Protein

Figure 6.9: Visualization of the second use case. Waters already inside the protein are
rendered using a detailed balls & sticks representation and outside waters are rendered
using a simplified sticks rendering strategy. The colors of all waters are chosen according
to the watergate color model. The context protein is rendered using a simplified cartoon
representation with a uniform coloring. Additionally, the used importance function is a
smoothed combination of the number of to active and from active waters. Graphical user
interface and rendering result of CAVER Analyst [Ana].

The second example is shown in Figure 6.10. Instead of rendering all waters that are
currently inside the protein, it highlights when waters change between two states using a
space-filling representation. The color is again dependent on the watergate color model.
Furthermore, outside waters are rendered using a simplified sticks representation but
instead of a uniform color, the CPK color model is used. The surrounding protein is
simplified using a cartoon representation and a uniform color is applied. In contrast to
the previous example, the importance function is now only dependent on the number
of changing water molecules and additionally, the importance function is no longer
smoothed.

87

6. Use Cases

Figure 6.10: Different visualization of the second use case. Outside waters are rendered
using a simplified stick representation, but instead of a uniform color, they are colored
using the CPK model. Waters that change from one state to another are rendered using
a more detailed space-filling strategy and their color is chosen according to the watergate
color model. The protein is again rendered using a simplified cartoon representation, but a
different uniform color was chosen by the user. This time, the importance function depends
on the number of waters that change state per keyframe and the resulting function is no
longer smoothed. Graphical user interface and rendering result of CAVER Analyst [Ana].

In summary, the two use cases have shown that MD-simulations of dense molecular
scenes can now be explored in 3D using our novel spatial and temporal focus & context
visualization. Additionally, we have shown that our visualization provides an average
frame rate of 100 FPS and is therefore well suited as real-time application.

Without our novel focus & context visualization, it would not be possible to explore
these large, detailed, and complex MD-simulation datasets efficiently in 3D and in real-
time. If biochemists try to analyze the interactions of a single ligand surrounded by
hundreds of residues, or a protein surrounded by thousands of water molecules, scenes

88

6.2. Influence of Waters on the Protein

are too dense and the analysis of long MD-simulations is too time-consuming to draw
meaningful conclusions from it. Therefore, relevant spatial and temporal events can
easily be overlooked.

Additionally, we already received particularly positive feedback on the ghosting procedure,
which renders context elements semi-transparently and simultaneously highlights edges
of context structures. Biochemists have noted that this functionality is not only highly
useful while exploring MD-simulations but should be an integral part of the CAVER
Analyst [Ana] framework for various analysis.

89

CHAPTER 7
Conclusions and Future Work

The following final chapter summarizes our contribution to the novel visualization
approach for the interactive exploration of MD-simulations in real-time. Additionally,
possible future problems and improvements through further developments are discussed.

7.1 Conclusion
This work was developed in close collaboration with international universities, such
as Masaryk University and the University of Bergen, together with biochemists and
domain experts from the Loschmidt Laboratories in Brno, Czech Republic. From the very
beginning, part of this cooperation were two-weekly on-site meetings in Vienna, which
focused on theoretical concepts and approaches. Subsequently, the meetings became
more practical and focused on exact implementation details. In addition to these on-site
meetings, online correspondences, such as conference calls or e-mails, were conducted.
In the last months of the development, these online correspondences were performed on
a weekly basis. Altogether there were 20 on-site meetings in Vienna and additionally
10 online conferences with experts from Bergen and Brno. Furthermore, we organized
two live presentations in Brno, where the current state of research was presented to eight
biochemists from the Loschmidt Laboratories. During these presentations, biochemists
had the possibility to give feedback on the current development status of our visualization.
Furthermore, there was a frequent online exchange of computed MD-simulation datasets
and e-mail correspondences for the development of practical use cases.

The aim of this work was not to invent novel importance functions or to verify how
relevant individual molecular elements are during explorations of dense, complex, and
animated MD-simulation. We did not want to evaluate which already implemented
temporal and spatial importance functions are best suited for the exploration of MD-
simulations. Our aim was to use already existing importance functions and apply them
to a novel spatio-temporal focus & context visualization that lowers the density of highly

91

7. Conclusions and Future Work

complex molecular scenes, prevents occlusions of focus elements, supports different levels
of detail, allows the user to analyze the playback in a more compact manner, reduces
visual clutter using motion blur, and therefore helps the user analyzing an animated MD-
simulation, without missing important spatial and temporal events. Therefore, the spatial
importance combines different well established levels of geometrical detail, such as dots,
sticks, balls & sticks, space-filling, surface, and cartoon representations. Additionally,
molecules can be colored using various coloring strategies like a default CPK color model,
a watergate color model, a custom color selection, and a categorical color coding. In
addition, it was necessary to developed a visibility management system, which guarantees
that context elements never occlude focus elements by applying an additional ghosting
procedure. We furthermore introduced visibility smoothing to prevent unnecessary visual
distractions of the user and presented a color interpolation, using ease-in and ease-out
functions, which is independent of the playback speed and the number of displayed
keyframe. Finally, we implemented motion blur that on the one hand, reduces visual
clutter from animated MD-simulations and on the other hand, encodes the playback
speed of individual molecular elements in a natural way since motion blur is an essential
reference, already known from our human visual system.

As shown by two different use cases, this real-time focus &context visualization approach
is applicable on completely different research tasks. Before that, MD-simulations were
mainly examined using statistical tests in combination with static graphs. After an
initial preprocessing step, the dataset can be interactively explored in real-time and even
important properties such as render strategies, color models, etc. can be changed during
runtime. Furthermore, we showed that in both cases an average of 100 FPS is achieved,
which is way above the necessary 60 FPS threshold for real-time applications.

7.2 Future Work

In the following section, we present possible improvements and extensions for future
implementations. Through our close collaboration with biochemists, we have continuously
received suggestions and new ideas for possible improvements. This ongoing feedback
highlights their interest in our real-time visualization, which gives them the possibility to
analyze MD-simulation datasets in real-time and 3D, which was not possible for them
before. In addition, it shows that biochemists are very interested in including this CAVER
Analyst [Ana] extension in their daily research and use it to publish novel insights.

In the following, we will discuss the importance of additional use cases and will explain
how supercomputers can be used to further improve our visualization. Our main focus
is on creating additional innovative use cases. This is especially interesting as domain
experts are then entering unknown terrain since it has not been possible to explore these
research areas interactively, using a spatio-temporal importance function. Therefore, it
would be particularly interesting to perform and design additional use cases. A possible
new case would be a combination of the two use cases we have already presented since
the influence of residues on the ligand is already analyzed but the influence of water

92

7.2. Future Work

molecules on the ligand is currently ignored. Therefore, it would combine the ligand
including residues and waters in combination with the protein. With that, it would be
possible to generate new hypotheses about how waters affect the interactions, movements,
and bindings of the ligand.

Another possibility is reducing the time that is currently required for preprocessing
MD-simulation keyframes. This could be done by supporting additional scripts that allow
researchers to outsource preprocessing computations to supercomputers. Since they have
access to these computers, all relevant individual or combinations of importance functions
and most frequently used distance thresholds, between focus and context elements, could
be calculated in advance and then accessed on demand. If these calculations can be stored
locally or with insignificant additional delays due to network transfers, this would be an
intense saving of time as the duration of pre-computations increases exponentially and
there would be no more waiting times to interact with the visualization. This is especially
relevant, as we assume that the number of keyframes will increase in the future from
thousands to millions, or billions of simulation frames. Currently, the pre-computation
leads to waiting times between a fraction of a second to a few minutes. This would
increase exponentially as the number of additional keyframes rises. Therefore, it would be
advantageous to have a possibility to export and import already computed calculations. If
this computation was executed once, it can be exported and used on any other computer.

In the following, we will focus on feedback regarding the graphical user interface, interac-
tions with the visualization, and additional functionality required by researchers. An
example of a potential improvement includes the possibility to add various additional
importance functions to the framework. Our CAVER Analyst [Ana] extension could
provide a multitude of functions that can be selected or combined by the user. Possibilities
are functions for distances, angles, edge bonds, and linear interaction energies. Another
possibility would be to allow the user to import arbitrary external functions. This would
enable other programs to generate various 2D functions that can then be imported and
used as temporal importance functions. Domain experts additionally want to change
these functions during runtime, for example, by using the mouse to increase or decrease
the importance of certain sections or modify the importance of individual keyframes.

Another suggestion for improvement was to allow the user to change the distance threshold
from context objects to the element in focus. For example, if the ligand is in focus,
the distance to surrounding context residues should be adjustable depending on user
preferences or GUI settings. Currently, this distance is hard-coded but in future versions
it should be changeable at runtime without any additional pre-computing steps. In
addition, it is currently not possible to focus on multiple ligands although scientists
would like to be able to analyze several ligands simultaneously. The dataset from the first
use case on the investigation of residues and their influence on the ligand, for example,
already contains 23 ligands which might be interesting as well. It will be particularly
important to investigate how many different focus objects can be analyzed by the user,
at the same time, without missing important events.

93

7. Conclusions and Future Work

During the last presentation, biochemists noted that motion blur is on the one hand, a
very natural way to encode speed and acceleration, but on the other hand, it would be
advantageous to know the exact speed-up in numbers. Future versions of this CAVER
Analyst [Ana] extension will therefore provide an additional GUI element showing the
exact acceleration in numbers. Thereby, researchers will know exactly how much the
movement of molecules has been accelerated, for example, that the ligand moves twice as
faster as originally simulated within the MD-simulation.

In addition, it is currently required to adjust the strength of motion blur using a GUI
slider. This should make it possible to support computers with less powerful graphics
hardware. As mentioned above, a low number of FPS could cause distracting visual
artifacts. If the computer is unable to render at least 60 FPS, the strength of motion blur
could be adjusted automatically depending on the average number of FPS. An automatic
approach could replace the currently used manual solution.

Another problem that could arise in the future during explorations of even longer
MD-simulations, consisting of millions and billions of keyframes, is an over-plotted
2D representation of the importance function. If the function consists of much more
keyframes than there are horizontal pixels in the GUI, this function can no longer be
displayed. A solution for this could be an additional focus & context approach like
non-linear video editing tools already have it now.

94

Bibliography

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-Time Ren-
dering. A. K. Peters, Ltd., Natick, MA, USA, 3rd edition, 2008.

[Ana] Development Team Caver Analyst. CAVER Analyst - softwaretool for
protein analysis and visualization. http://www.caver.cz/. [Accessed
01-August-2018].

[AW57] Bernie J. Alder and Thomas E. Wainwright. Phase transition for a hard
sphere system. The Journal of Chemical Physics, 27:1208–1209, 1957.

[AW59] Bernie J. Alder and Thomas E. Wainwright. Studies in molecular dynamics.
i. general method. The Journal of Chemical Physics, 31:459–466, 1959.

[BAAR12] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoor-
thi. Selectively de-animating video. ACM Transactions on Graphics -
Proceedings of ACM SIGGRAPH, 31:66:1–66:10, 2012.

[BALP09] Alexandra Baer, Friederike Adler, Daniel Lenz, and Bernhard Preim.
Perception-based Evaluation of Emphasis Techniques Used in 3D Medical
Visualization. Vision, Modeling, and Visualization Workshop (VMV), pages
295–304, 2009.

[BGKG06] Stefan Bruckner, Sören Grimm, Armin Kanitsar, and Eduard Gröller. Illus-
trative context-preserving exploration of volume data. IEEE Transactions
on Visualization and Computer Graphics, 12:1559–1569, 2006.

[Bli77] James F. Blinn. Models of light reflection for computer synthesized pictures.
SIGGRAPH Comput. Graph., 11:192–198, 1977.

[BVMG08] Jean-Paul Balabanian, Ivan Viola, Torsten Möller, and Eduard Gröller.
Temporal styles for time-varying volume data. Proceedings of 3D Data
Processing, Visualization, and Transmission, pages 81–89, 2008.

[BWF+] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, Tala-
pady N. Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The
Protein Data Bank. http://www.rcsb.org. [Accessed 16-August-2018].

95

http://www.caver.cz/
http://www.rcsb.org

[CBFR08] Nuno Cerqueira, Natercia Bras, Pedro A. Fernandes, and Maria J. Ramos.
MADAMM: A multistaged docking with an automated molecular modeling
protocol. Proteins Structure Function and Bioinformatics, 74:192–206,
2008.

[CDF+06] Forrester Cole, Doug DeCarlo, Adam Finkelstein, Kenrick Kin, Keith
Morley, and Anthony Santella. Directing gaze in 3D models with stylized
focus. Eurographics Symposium on Rendering, pages 377–387, 2006.

[CDSRC08] Alexandre Carvalho, A. Augusto De Sousa, Cristina Ribeiro, and Emília
Costa. A temporal focus + context visualization model for handling valid-
time spatial information. Information Visualization, 7:265–274, 2008.

[Chi] UCSF Chimera. Resource for Biocomputing Visualization, and
Informatics. An Extensible Molecular Modeling System - Find
Clashes/Contacts. https://www.cgl.ucsf.edu/chimera/docs/
ContributedSoftware/findclash/findclash.html. [Accessed
17-September-2018].

[CLCC09] Kai-Yin Cheng, Sheng-Jie Luo, Bing-Yu Chen, and Hao-Hua Chu. Smart-
Player: User-centric video fast-forwarding. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 789–798, 2009.

[CWM99] Frank Albert Cotton, Geoffrey Wilkinson, and Carlos A. Murillo. Advanced
inorganic chemistry. Wiley-Interscience, Sixth edition, 1999.

[DO07] Ajay Divakaran and Isao Otsuka. A video-browsing-enhanced personal
video recorder. International Conference of Image Analysis and Processing
- Workshops, pages 137–142, 2007.

[DRB+08] Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz, Derek
Nowrouzezahrai, Ravin Balakrishnan, and Karan Singh. Video brows-
ing by direct manipulation. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 237–246, 2008.

[FS01] Daan Frenkel and Berend Smit. Understanding molecular simulation.
Academic Press, Inc., 2nd edition, 2001.

[Hau04] Helwig Hauser. Generalizing focus+context visualization. Technische
Universität Wien, Österreich, Fakultät für Informatik, Habilitationsschrift:1–
153, 2004.

[HHWH11] Benjamin Höferlin, Markus Höferlin, Daniel Weiskopf, and Gunther Hei-
demann. Information-based adaptive fast-forward for visual surveillance.
Multimedia Tools Appl., 55:127–150, 2011.

96

https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/findclash/findclash.html
https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/findclash/findclash.html

[HJ05] Wolfgang Hurst and Philipp Jarvers. Interactive, dynamic video browsing
with the zoomslider interface. 2005 IEEE International Conference on
Multimedia and Expo(ICME), pages 558–561, 2005.

[HKH+12] Markus Höferlin, Kuno Kurzhals, Benjamin Höferlin, Gunther Heidemann,
and Daniel Weiskopf. Evaluation of fast-forward video visualization. IEEE
Transactions on Visualization and Computer Graphics, 18:2095–2103, 2012.

[Hof65] August Hofmann. On the combining power of atoms. Proceedings of the
Royal Institution, 4:401–430, 1865.

[HOvG02] Tomas Hansson, Chris Oostenbrink, and Wilfred F. van Gunsteren. Molec-
ular dynamics simulations. Current Opinion in Structural Biology, 12:190–
196, 2002.

[KC14] Brittany Kondo and Christopher Collins. DimpVis: Exploring time-varying
information visualizations by direct manipulation. IEEE Transactions on
Visualization and Computer Graphics, 20:2003–2012, 2014.

[Kek65] August Kekulé. Studies on aromatic compounds. Liebigs Annalen der
Chemie, 137:129–196, 1865.

[KKF+17] Barbora Kozlíková, Michael Krone, Martin Falk, Norbert Lindow, Marc
Baaden, Daniel Baum, Ivan Viola, Julius Parulek, and Hans-Christian
Hege. Visualization of biomolecular structures: State of the art revisited.
Computer Graphics Forum, 36:178–204, 2017.

[KMH01] Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic depth of field.
Proceedings of the IEEE Symposium on Information Visualization, pages
97–104, 2001.

[Kol65] Walter L. Koltun. Precision space-filling atomic models. Biopolymers,
3:665–679, 1965.

[Lea09] Andrew R. Leach. Molecular modelling : principles and applications.
Pearson Prentice Hall, Second edition, 2009.

[LMH+07] Xueliang Liu, Tao Mei, Xian-Sheng Hua, Bo Yang, and He-Qin Zhou.
Video collage. Proceedings of the 15th ACM International Conference on
Multimedia, pages 461–462, 2007.

[LR71] Bon-Su Lee and Frederic M. Richards. The interpretation of protein
structures: Estimation of static accessibility. Journal of Molecular Biology,
55:379–IN4, 1971.

[LTF+05] Ce Liu, Antonio Torralba, William T. Freeman, Frédo Durand, and Ed-
ward H. Adelson. Motion magnification. ACM Transactions on Graphics -
Proceedings of ACM SIGGRAPH, 24:519–526, 2005.

97

[Mat16] The Mathworks, Inc., Natick, Massachusetts, United States. MATLAB
version 9.1.0.441655 (R2016b), 2016.

[Mil94] Gavin Miller. Efficient algorithms for local and global accessibility shading.
Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques, pages 319–326, 1994.

[MM04] Elke Moritz and Joerg Meyer. Interactive 3d protein structure visual-
ization using virtual reality. Proceedings. Fourth IEEE Symposium on
Bioinformatics and Bioengineering, pages 503–507, 2004.

[MTC06] Claudio Montani, Marco Tarini, and Paolo Cignoni. Ambient occlusion
and edge cueing for enhancing real time molecular visualization. IEEE
Transactions on Visualization and Computer Graphics, 12:1237–1244, 2006.

[NSG11] Fernando Navarro, Francisco J. Serón, and Diego Gutierrez. Motion blur
rendering: State of the art. Computer Graphics Forum, 30:3–26, 2011.

[OGF+10] Sean O’Donoghue, David S. Goodsell, Achilleas S. Frangakis, Fabrice
Jossinet, Roman Laskowski, Michael Nilges, Helen R. Saibil, Andrea Schaf-
ferhans, Rebecca C. Wade, Eric Westhof, and Arthur J. Olson. Visualization
of macromolecular structures. Nature methods, 7:42–55, 2010.

[Ols18] Arthur J. Olson. (in press). Perspectives on Structural Molecular Biol-
ogy Visualization: From Past to Present. Journal of Molecular Biology,
doi: https://doi.org/10.1016/j.jmb.2018.07.009, 2018. [Ac-
cessed 06-October-2018].

[Pen] Robert Penner. Easing Equations. http://gizma.com/easing/. [Ac-
cessed 01-August-2018].

[Per05a] James A. Perkins. A History of Molecular Representation Part 2: The
1960s - Present. The Journal of Biocommunication, 31(2): http://
jbiocommunication.org/issues/31--2/feature2.html, 2005.
[Accessed 06-October-2018].

[Per05b] James A. Perkins. A History of Molecular Representation Part One:
1800 to the 1960s. The Journal of Biocommunication, 31(1): http://
jbiocommunication.org/issues/31--1/features3.html, 2005.
[Accessed 06-October-2018].

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Commu-
nications of the ACM, 18:311–317, 1975.

[PIB+11] Robert Patro, Cheuk Y. Ip, Sujal Bista, Dave Thirumalai, Samuel S.
Cho, and Amitabh Varshney. MDMap: A system for data-driven layout
and exploration of molecular dynamics simulations. IEEE Symposium on
Biological Data Visualization, pages 111–118, 2011.

98

https://doi.org/10.1016/j.jmb.2018.07.009
http://gizma.com/easing/
http://jbiocommunication.org/issues/31--2/feature2.html
http://jbiocommunication.org/issues/31--2/feature2.html
http://jbiocommunication.org/issues/31--1/features3.html
http://jbiocommunication.org/issues/31--1/features3.html

[PIV10] Robert Patro, Cheuk Y. Ip, and Amitabh Varshney. Saliency guided
summarization of molecular dynamics simulations. Scientific Visualization:
Advanced Concepts, 1:321–335, 2010.

[Rah64] Aneesur Rahman. Correlations in the motion of atoms in liquid argon.
Phys. Rev., 136:A405–A411, 1964.

[RAPP06] Alex Rav-Acha, Yael Pritch, and Shmuel Peleg. Making a long video short:
Dynamic video synopsis. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 1:435–441, 2006.

[Ren] Gaëtan Renaudeau. Easing Functions. https://gist.github.com/
gre/1650294. [Accessed 01-August-2018].

[Ric81] Jane S. Richardson. The anatomy and taxonomy of protein structure.
Academic Press, 34:167–339, 1981.

[RLN07] Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. Measuring visual clutter.
Journal of Vision, 7:17, 2007.

[SBC07] Kenneth C. Scott-Brown and Patrick D. J. Cronin. An instinct for detection:
psychological perspectives on CCTV surveillance. The Police Journal,
80:287–305, 2007.

[SL98] Daniel J. Simons and Daniel T. Levin. Failure to detect changes to people
during a real-world interaction. Psychonomic Bulletin & Review, 5:644–649,
1998.

[VBJ+17] Viktor Vad, Jan Byška, Adam Jurčík, Ivan Viola, Eduard Gröller, Hel-
wig Hauser, Sergio M. Margues, Jiri Damborský, and Barbora Kozlíková.
Watergate: Visual exploration of water trajectories in protein dynamics.
Eurographics Workshop on Visual Computing for Biology and Medicine,
pages 33–42, 2017.

[vdZLBI11] Matthew van der Zwan, Wouter Lueks, Henk Bekker, and Tobias Isenberg.
Illustrative molecular visualization with continuous abstraction. Computer
Graphics Forum, 30:683–690, 2011.

[VFSG06] Ivan Viola, Miquel Feixas, Mateu Sbert, and Eduard Gröller. Importance-
driven focus of attention. IEEE Transactions on Visualization and Com-
puter Graphics, 12:933–940, 2006.

[VKG04] Ivan Viola, Armin Kanitsar, and Eduard Gröller. Importance-driven volume
rendering. Proceedings of the Conference on Visualization, pages 139–146,
2004.

[Waa73] Johannes Diderik Waals. Over de continuiteit van den gas- en vloeistoftoe-
stand. PhD thesis, Univ. Leiden, 1873.

99

https://gist.github.com/gre/1650294
https://gist.github.com/gre/1650294

[WAH+09] Marc Wolter, Ingo Assenmacher, Bernd Hentschel, Marc Schirski, and
Torsten Kuhlen. A Time Model for Time-Varying Visualization. Computer
Graphics Forum, 28:1561–1571, 2009.

[War04] Colin Ware. Information visualization: Perception for design. Morgan
Kaufmann Publishers Inc., 2nd edition, 2004.

[WHA07] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Scented widgets: Im-
proving navigation cues with embedded visualizations. IEEE Transactions
on Visualization and Computer Graphics, 13:1129–1136, 2007.

[WHTPK09] Marc Wolter, Bernd Hentschel, Irene Tedjo-Palczynski, and Torsten Kuhlen.
A direct manipulation interface for time navigation in scientific visualiza-
tions. 2009 IEEE Symposium on 3D User Interfaces, pages 11–18, 2009.

[WMY+03] Barbara M. Wildemuth, Gary Marchionini, Meng Yang, Gary Geisler,
Todd Wilkens, Anthony Hughes, and Richard Gruss. How fast is too fast?:
Evaluating fast forward surrogates for digital video. Proceedings of the 3rd
ACM/IEEE-CS Joint Conference on Digital Libraries, 10:221–230, 2003.

[ZIK98] Sergej Zhukov, Andrej Iones, and Grigorij Kronin. An ambient light
illumination model. Rendering Techniques ’98, pages 45–55, 1998.

100

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Molecular Visualization
	Molecular Dynamics Simulations

	Related Work
	Visualizations of MD-Simulations
	Focus & Context Visualizations
	Time-Varying Data Visualization

	Spatio-Temporal Focus & Context for MD-Simulations
	Graphical User Interface
	Spatial Importance
	Temporal Importance

	Implementation
	Spatial Importance
	Temporal Importance

	Use Cases
	Influence of Residues on the Ligand
	Influence of Waters on the Protein

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

